Name
determinant_matrixdeterminant_matrixDeterminantMatrixDeterminantMatrix — Compute the determinant of a matrix.
The operator determinant_matrixdeterminant_matrixDeterminantMatrixDeterminantMatrixDeterminantMatrix computes the determinant of
the input MatrixMatrixMatrixMatrixmatrix given by the matrix handle
MatrixIDMatrixIDMatrixIDMatrixIDmatrixID. The type of the input MatrixMatrixMatrixMatrixmatrix can be
selected via the parameter MatrixTypeMatrixTypeMatrixTypeMatrixTypematrixType. The following
values are supported: 'general'"general""general""general""general" for general,
'symmetric'"symmetric""symmetric""symmetric""symmetric" for symmetric, 'positive_definite'"positive_definite""positive_definite""positive_definite""positive_definite" for
symmetric positive definite, 'tridiagonal'"tridiagonal""tridiagonal""tridiagonal""tridiagonal" for tridiagonal,
'upper_triangular'"upper_triangular""upper_triangular""upper_triangular""upper_triangular" for upper triangular,
'permuted_upper_triangular'"permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular" for permuted upper triangular,
'lower_triangular'"lower_triangular""lower_triangular""lower_triangular""lower_triangular" for lower triangular, and
'permuted_lower_triangular'"permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular" for permuted lower triangular
matrices. The formula for the calculation of the result
is:
ValueValueValueValuevalue = det MatrixMatrixMatrixMatrixmatrix.
Example:
For MatrixTypeMatrixTypeMatrixTypeMatrixTypematrixType = 'symmetric'"symmetric""symmetric""symmetric""symmetric",
'positive_definite'"positive_definite""positive_definite""positive_definite""positive_definite", or 'upper_triangular'"upper_triangular""upper_triangular""upper_triangular""upper_triangular" the
upper triangular part of the input MatrixMatrixMatrixMatrixmatrix must contain
the relevant information of the matrix. The strictly lower
triangular part of the matrix is not referenced. For
MatrixTypeMatrixTypeMatrixTypeMatrixTypematrixType = 'lower_triangular'"lower_triangular""lower_triangular""lower_triangular""lower_triangular" the lower
triangular part of the input MatrixMatrixMatrixMatrixmatrix must contain the
relevant information of the matrix. The strictly upper triangular
part of the matrix is not referenced. For MatrixTypeMatrixTypeMatrixTypeMatrixTypematrixType =
'tridiagonal'"tridiagonal""tridiagonal""tridiagonal""tridiagonal", only the main diagonal, the superdiagonal,
and the subdiagonal of the input MatrixMatrixMatrixMatrixmatrix are used. The
other parts of the matrix are not referenced. If the referenced
part of the input MatrixMatrixMatrixMatrixmatrix is not of the specified type,
an exception is raised.
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Matrix handle of the input matrix.
The type of the input matrix.
Default value:
'general'
"general"
"general"
"general"
"general"
List of values: 'general'"general""general""general""general", 'lower_triangular'"lower_triangular""lower_triangular""lower_triangular""lower_triangular", 'permuted_lower_triangular'"permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular", 'permuted_upper_triangular'"permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular", 'positive_definite'"positive_definite""positive_definite""positive_definite""positive_definite", 'symmetric'"symmetric""symmetric""symmetric""symmetric", 'tridiagonal'"tridiagonal""tridiagonal""tridiagonal""tridiagonal", 'upper_triangular'"upper_triangular""upper_triangular""upper_triangular""upper_triangular"
Determinant of the input matrix.
If the parameters are valid, the operator determinant_matrixdeterminant_matrixDeterminantMatrixDeterminantMatrixDeterminantMatrix
returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.
create_matrixcreate_matrixCreateMatrixCreateMatrixCreateMatrix
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Foundation