ClassesClasses | | Operators

learn_ndim_normT_learn_ndim_normLearnNdimNormLearnNdimNorm (Operator)

Name

learn_ndim_normT_learn_ndim_normLearnNdimNormLearnNdimNorm — Construct classes for class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm.

Signature

learn_ndim_norm(Foreground, Background, Image : : Metric, Distance, MinNumberPercent : Radius, Center, Quality)

Herror T_learn_ndim_norm(const Hobject Foreground, const Hobject Background, const Hobject Image, const Htuple Metric, const Htuple Distance, const Htuple MinNumberPercent, Htuple* Radius, Htuple* Center, Htuple* Quality)

void LearnNdimNorm(const HObject& Foreground, const HObject& Background, const HObject& Image, const HTuple& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Radius, HTuple* Center, HTuple* Quality)

HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const HString& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Center, double* Quality) const

HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const HString& Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const

HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const char* Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const

HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const HString& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Center, double* Quality) const

HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const HString& Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const

HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const char* Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const

static void HOperatorSet.LearnNdimNorm(HObject foreground, HObject background, HObject image, HTuple metric, HTuple distance, HTuple minNumberPercent, out HTuple radius, out HTuple center, out HTuple quality)

HTuple HImage.LearnNdimNorm(HRegion foreground, HRegion background, string metric, HTuple distance, HTuple minNumberPercent, out HTuple center, out double quality)

HTuple HImage.LearnNdimNorm(HRegion foreground, HRegion background, string metric, double distance, double minNumberPercent, out HTuple center, out double quality)

HTuple HRegion.LearnNdimNorm(HRegion background, HImage image, string metric, HTuple distance, HTuple minNumberPercent, out HTuple center, out double quality)

HTuple HRegion.LearnNdimNorm(HRegion background, HImage image, string metric, double distance, double minNumberPercent, out HTuple center, out double quality)

Description

learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm generates classification clusters from the region ForegroundForegroundForegroundForegroundforeground and the corresponding gray values in the multi-channel image ImageImageImageImageimage, which can be used in class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm. BackgroundBackgroundBackgroundBackgroundbackground determines a class of pixels not to be found in class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm. This parameter may be empty (empty object).

The parameter DistanceDistanceDistanceDistancedistance determines the maximum distance RadiusRadiusRadiusRadiusradius of the clusters. It describes the minimum distance between two cluster centers. If the parameter DistanceDistanceDistanceDistancedistance is small the (small) hyper-cubes or hyper-spheres can approximate the feature space well. Simultaneously the runtime during classification increases.

The ratio of the number of pixels in a cluster to the total number of pixels (in percent) must be larger than the value of MinNumberPercentMinNumberPercentMinNumberPercentMinNumberPercentminNumberPercent, otherwise the cluster is not returned. MinNumberPercentMinNumberPercentMinNumberPercentMinNumberPercentminNumberPercent serves to eliminate outliers in the training set. If it is chosen too large many clusters are suppressed.

Two different clustering procedures can be selected: The minimum Euclidean distance algorithm (n-dimensional hyper-spheres) and the maximum algorithm (n-dimensional hyper-cubes) for describing the pixels of the image to classify in the n-dimensional histogram (parameter MetricMetricMetricMetricmetric). The Euclidian metric usually yields the better results, but takes longer to compute. The parameter QualityQualityQualityQualityquality returns the quality of the clustering. It is a measure of overlap between the rejection class and the classificator classes. Values larger than 0 denote the corresponding ratio of overlap. If no rejection region is given, its value is set to 1. The regions in BackgroundBackgroundBackgroundBackgroundbackground do not influence on the clustering. They are merely used to check the results that can be expected.

From a user's point of view the key difference between learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm and learn_ndim_boxlearn_ndim_boxLearnNdimBoxLearnNdimBoxLearnNdimBox is that in the latter case the rejection class affects the classification process itself. Here, a hyper plane is generated that separates ForegroundForegroundForegroundForegroundforeground and BackgroundBackgroundBackgroundBackgroundbackground classes, so that no points in feature space are classified incorrectly. As for learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm, however, an overlap between ForegroundForegroundForegroundForegroundforeground and BackgroundBackgroundBackgroundBackgroundbackground class is allowed. This has its effect on the return value QualityQualityQualityQualityquality. The larger the overlap, the smaller this value.

Execution Information

Parameters

ForegroundForegroundForegroundForegroundforeground (input_object)  region(-array) objectHRegionHRegionHobject

Foreground pixels to be trained.

BackgroundBackgroundBackgroundBackgroundbackground (input_object)  region(-array) objectHRegionHRegionHobject

Background pixels to be trained (rejection class).

ImageImageImageImageimage (input_object)  (multichannel-)image(-array) objectHImageHImageHobject (byte)

Multi-channel training image.

MetricMetricMetricMetricmetric (input_control)  string HTupleHTupleHtuple (string) (string) (HString) (char*)

Metric to be used.

Default value: 'euclid' "euclid" "euclid" "euclid" "euclid"

List of values: 'euclid'"euclid""euclid""euclid""euclid", 'maximum'"maximum""maximum""maximum""maximum"

DistanceDistanceDistanceDistancedistance (input_control)  number HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Maximum cluster radius.

Default value: 10.0

Suggested values: 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 13.0, 17.0, 24.0, 30.0, 40.0

Typical range of values: 0.0 ≤ Distance Distance Distance Distance distance ≤ 511.0 (lin)

Minimum increment: 0.01

Recommended increment: 1.0

Restriction: Distance > 0.0

MinNumberPercentMinNumberPercentMinNumberPercentMinNumberPercentminNumberPercent (input_control)  number HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

The ratio of the number of pixels in a cluster to the total number of pixels (in percent) must be larger than MinNumberPercent (otherwise the cluster is not output).

Default value: 0.01

Suggested values: 0.001, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0

Typical range of values: 0.0 ≤ MinNumberPercent MinNumberPercent MinNumberPercent MinNumberPercent minNumberPercent ≤ 100.0 (lin)

Minimum increment: 0.01

Recommended increment: 0.1

Restriction: 0 <= MinNumberPercent && MinNumberPercent <= 100

RadiusRadiusRadiusRadiusradius (output_control)  real-array HTupleHTupleHtuple (real) (double) (double) (double)

Cluster radii or half edge lengths.

CenterCenterCenterCentercenter (output_control)  real-array HTupleHTupleHtuple (real) (double) (double) (double)

Coordinates of all cluster centers.

QualityQualityQualityQualityquality (output_control)  real HTupleHTupleHtuple (real) (double) (double) (double)

Overlap of the rejection class with the classified objects (1: no overlap).

Assertion: 0 <= Quality && Quality <= 1

Result

learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm returns 2 (H_MSG_TRUE) if all parameters are correct. The behavior with respect to the input images can be determined by setting the values of the flags 'no_object_result'"no_object_result""no_object_result""no_object_result""no_object_result" and 'empty_region_result'"empty_region_result""empty_region_result""empty_region_result""empty_region_result" with set_systemset_systemSetSystemSetSystemSetSystem. If necessary, an exception is raised.

Possible Predecessors

min_max_graymin_max_grayMinMaxGrayMinMaxGrayMinMaxGray, sobel_ampsobel_ampSobelAmpSobelAmpSobelAmp, binomial_filterbinomial_filterBinomialFilterBinomialFilterBinomialFilter, gauss_filtergauss_filterGaussFilterGaussFilterGaussFilter, reduce_domainreduce_domainReduceDomainReduceDomainReduceDomain, diff_of_gaussdiff_of_gaussDiffOfGaussDiffOfGaussDiffOfGauss

Possible Successors

class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm, connectionconnectionConnectionConnectionConnection, dilation1dilation1Dilation1Dilation1Dilation1, erosion1erosion1Erosion1Erosion1Erosion1, openingopeningOpeningOpeningOpening, closingclosingClosingClosingClosing, rank_regionrank_regionRankRegionRankRegionRankRegion, shape_transshape_transShapeTransShapeTransShapeTrans, skeletonskeletonSkeletonSkeletonSkeleton

Alternatives

learn_ndim_boxlearn_ndim_boxLearnNdimBoxLearnNdimBoxLearnNdimBox, learn_class_boxlearn_class_boxLearnClassBoxLearnClassBoxLearnClassBox

See also

class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm, histo_2dimhisto_2dimHisto2dimHisto2dimHisto2dim

References

P. Haberäcker, “Digitale Bildverarbeitung”; Hanser-Studienbücher, München, Wien, 1987

Module

Foundation


ClassesClasses | | Operators