ClassesClasses | | Operators

norm_matrixnorm_matrixNormMatrixNormMatrix (Operator)

Name

norm_matrixnorm_matrixNormMatrixNormMatrix — Norm of a matrix.

Signature

norm_matrix( : : MatrixID, NormType : Value)

Herror norm_matrix(const Hlong MatrixID, const char* NormType, double* Value)

Herror T_norm_matrix(const Htuple MatrixID, const Htuple NormType, Htuple* Value)

void NormMatrix(const HTuple& MatrixID, const HTuple& NormType, HTuple* Value)

double HMatrix::NormMatrix(const HString& NormType) const

double HMatrix::NormMatrix(const char* NormType) const

static void HOperatorSet.NormMatrix(HTuple matrixID, HTuple normType, out HTuple value)

double HMatrix.NormMatrix(string normType)

Description

The operator norm_matrixnorm_matrixNormMatrixNormMatrixNormMatrix computes the norm of the elements of the MatrixMatrixMatrixMatrixmatrix defined by the matrix handle MatrixIDMatrixIDMatrixIDMatrixIDmatrixID. The return value is a floating point number.

The type of norming of the matrix can be selected via the parameter NormTypeNormTypeNormTypeNormTypenormType:

'frobenius-norm'"frobenius-norm""frobenius-norm""frobenius-norm""frobenius-norm":

The Frobenius norm is computed. The formula for the calculation of the result is:

with m = number of rows and n = number of columns of the MatrixMatrixMatrixMatrixmatrix.

Example:

'infinity-norm'"infinity-norm""infinity-norm""infinity-norm""infinity-norm":

The infinity norm is computed. The result is the largest value of the sum of the absolute values of the elements of the rows. The formula for the calculation is:

with m = number of rows and n = number of columns of the MatrixMatrixMatrixMatrixmatrix.

Example:

'1-norm'"1-norm""1-norm""1-norm""1-norm":

The 1-norm is computed. The result is the largest value of the sum of the absolute values of the elements of the columns. The formula for the calculation is:

with m = number of rows and n = number of columns of the MatrixMatrixMatrixMatrixmatrix.

Example:

'2-norm'"2-norm""2-norm""2-norm""2-norm":

The 2-norm is computed. The result is the largest singular value of the MatrixMatrixMatrixMatrixmatrix. The formula for the calculation of the result is:


   Value = max (singular values (Matrix))

  

Example:

Execution Information

Parameters

MatrixIDMatrixIDMatrixIDMatrixIDmatrixID (input_control)  matrix HMatrix, HTupleHTupleHtuple (integer) (IntPtr) (Hlong) (Hlong)

Matrix handle of the input matrix.

NormTypeNormTypeNormTypeNormTypenormType (input_control)  string HTupleHTupleHtuple (string) (string) (HString) (char*)

Type of norm.

Default value: '2-norm' "2-norm" "2-norm" "2-norm" "2-norm"

List of values: '1-norm'"1-norm""1-norm""1-norm""1-norm", '2-norm'"2-norm""2-norm""2-norm""2-norm", 'frobenius-norm'"frobenius-norm""frobenius-norm""frobenius-norm""frobenius-norm", 'infinity-norm'"infinity-norm""infinity-norm""infinity-norm""infinity-norm"

ValueValueValueValuevalue (output_control)  real HTupleHTupleHtuple (real) (double) (double) (double)

Norm of the input matrix.

Result

If the parameters are valid, the operator norm_matrixnorm_matrixNormMatrixNormMatrixNormMatrix returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.

Possible Predecessors

create_matrixcreate_matrixCreateMatrixCreateMatrixCreateMatrix

See also

sum_matrixsum_matrixSumMatrixSumMatrixSumMatrix, mean_matrixmean_matrixMeanMatrixMeanMatrixMeanMatrix

References

David Poole: “Linear Algebra: A Modern Introduction”; Thomson; Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The Johns Hopkins University Press; Baltimore and London; 1996.

Module

Foundation


ClassesClasses | | Operators