Name
proj_match_points_distortion_ransac T_proj_match_points_distortion_ransac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac — Compute a projective transformation matrix between two images and
the radial distortion coefficient by automatically finding
correspondences between points.
proj_match_points_distortion_ransac (Image1 , Image2 : : Rows1 , Cols1 , Rows2 , Cols2 , GrayMatchMethod , MaskSize , RowMove , ColMove , RowTolerance , ColTolerance , Rotation , MatchThreshold , EstimationMethod , DistanceThreshold , RandSeed : HomMat2D , Kappa , Error , Points1 , Points2 )
Herror T_proj_match_points_distortion_ransac (const Hobject Image1 , const Hobject Image2 , const Htuple Rows1 , const Htuple Cols1 , const Htuple Rows2 , const Htuple Cols2 , const Htuple GrayMatchMethod , const Htuple MaskSize , const Htuple RowMove , const Htuple ColMove , const Htuple RowTolerance , const Htuple ColTolerance , const Htuple Rotation , const Htuple MatchThreshold , const Htuple EstimationMethod , const Htuple DistanceThreshold , const Htuple RandSeed , Htuple* HomMat2D , Htuple* Kappa , Htuple* Error , Htuple* Points1 , Htuple* Points2 )
void ProjMatchPointsDistortionRansac (const HObject& Image1 , const HObject& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HTuple& GrayMatchMethod , const HTuple& MaskSize , const HTuple& RowMove , const HTuple& ColMove , const HTuple& RowTolerance , const HTuple& ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HTuple& EstimationMethod , const HTuple& DistanceThreshold , const HTuple& RandSeed , HTuple* HomMat2D , HTuple* Kappa , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HHomMat2D HImage ::ProjMatchPointsDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::ProjMatchPointsDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::ProjMatchPointsDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
double HHomMat2D ::ProjMatchPointsDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
double HHomMat2D ::ProjMatchPointsDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
double HHomMat2D ::ProjMatchPointsDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
static void HOperatorSet .ProjMatchPointsDistortionRansac (HObject image1 , HObject image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HTuple grayMatchMethod , HTuple maskSize , HTuple rowMove , HTuple colMove , HTuple rowTolerance , HTuple colTolerance , HTuple rotation , HTuple matchThreshold , HTuple estimationMethod , HTuple distanceThreshold , HTuple randSeed , out HTuple homMat2D , out HTuple kappa , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .ProjMatchPointsDistortionRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out double kappa , out double error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .ProjMatchPointsDistortionRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double kappa , out double error , out HTuple points1 , out HTuple points2 )
double HHomMat2D .ProjMatchPointsDistortionRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
double HHomMat2D .ProjMatchPointsDistortionRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1 ,Cols1 Cols1 Cols1 Cols1 cols1 ) and
(Rows2 Rows2 Rows2 Rows2 rows2 ,Cols2 Cols2 Cols2 Cols2 cols2 ) in both input images
Image1 Image1 Image1 Image1 image1 and Image2 Image2 Image2 Image2 image2 , which must be of identical
size, proj_match_points_distortion_ransac proj_match_points_distortion_ransac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac automatically
determines corresponding points, the homogeneous projective
transformation matrix HomMat2D HomMat2D HomMat2D HomMat2D homMat2D , and the radial distortion
coefficient Kappa Kappa Kappa Kappa kappa
that optimally fulfill the
following equation:
Here,
denote image points that are obtained by undistorting the input
image points with the division model (see
calibrate_cameras calibrate_cameras CalibrateCameras CalibrateCameras CalibrateCameras ):
Here,
denote the
distorted image points, specified relative to the image center, and
w and h denote the width and height of the input images. Thus,
proj_match_points_distortion_ransac proj_match_points_distortion_ransac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac assumes that the
principal point of the camera, i.e., the center of the radial
distortions, lies at the center of the image.
The returned Kappa Kappa Kappa Kappa kappa can be used to construct camera
parameters that can be used to rectify images or points (see
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ,
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage , and
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints ):
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner or
points_harris points_harris PointsHarris PointsHarris PointsHarris . The matching itself is carried out in two
steps: first, gray value correlations of mask windows around the
input points in the first and the second image are determined and an
initial matching between them is generated using the similarity of
the windows in both images. Then, the RANSAC algorithm is applied
to find the projective transformation matrix and radial distortion
coefficient that maximizes the number of correspondences under the
above constraint.
The size of the mask windows used for the matching is
MaskSize MaskSize MaskSize MaskSize maskSize x
MaskSize MaskSize MaskSize MaskSize maskSize . Three metrics for the correlation can be
selected. If GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod has the value 'ssd' "ssd" "ssd" "ssd" "ssd" ,
the sum of the squared gray value differences is used,
'sad' "sad" "sad" "sad" "sad" means the sum of absolute differences, and
'ncc' "ncc" "ncc" "ncc" "ncc" is the normalized cross correlation. For details
please refer to binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity . The metric is minimized
('ssd' "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" ) or maximized ('ncc' "ncc" "ncc" "ncc" "ncc" ) over
all possible point pairs. A thus found matching is only accepted if
the value of the metric is below the value of
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold ('ssd' "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" ) or above
that value ('ncc' "ncc" "ncc" "ncc" "ncc" ).
To increase the algorithm's performance, the search area for the
match candidates can be limited to a rectangle by specifying its
size and offset. Only points within a window of
points are considered. The offset of the
center of the search window in the second image with respect to the
position of the current point in the first image is given by
RowMove RowMove RowMove RowMove rowMove and ColMove ColMove ColMove ColMove colMove .
If the transformation contains a rotation, i.e., if the first image
is rotated with respect to the second image, the parameter
Rotation Rotation Rotation Rotation rotation may contain an estimate for the rotation angle or
an angle interval in radians. A good guess will increase the
quality of the gray value matching. If the actual rotation differs
too much from the specified estimate, the matching will typically
fail. In this case, an angle interval should be specified and
Rotation Rotation Rotation Rotation rotation is a tuple with two elements. The larger the
given interval is the slower the operator is since the RANSAC
algorithm is run over all (automatically determined) angle
increments within the interval.
After the initial matching has been completed, a randomized search
algorithm (RANSAC) is used to determine the projective
transformation matrix HomMat2D HomMat2D HomMat2D HomMat2D homMat2D and the radial distortion
coefficient Kappa Kappa Kappa Kappa kappa . It tries to find the parameters that
are consistent with a maximum number of correspondences. For a
point to be accepted, the distance in pixels to its corresponding
transformed point must not exceed the threshold
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold .
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod determines which algorithm
is used to compute the projective transformation matrix. A linear
algorithm is used if EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod is set to
'linear' "linear" "linear" "linear" "linear" . This algorithm is very fast and returns accurate
results for small to moderate noise of the point coordinates and for
most distortions (except for small distortions). For
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod = 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" , a
mathematically optimal but slower optimization is used, which
minimizes the geometric reprojection error. In general, it is
preferable to use EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod =
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" .
The value Error Error Error Error error indicates the overall quality of the
estimation procedure and is the mean symmetric euclidean distance in
pixels between the points and their corresponding transformed
points.
Point pairs consistent with the above constraints are considered to
be corresponding points. Points1 Points1 Points1 Points1 points1 contains the indices of
the matched input points from the first image and Points2 Points2 Points2 Points2 points2
contains the indices of the corresponding points in the second
image.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeed RandSeed RandSeed RandSeed randSeed is set to a positive
number, the operator returns the same result on every call with the
same parameters because the internally used random number generator
is initialized with RandSeed RandSeed RandSeed RandSeed randSeed . If RandSeed RandSeed RandSeed RandSeed randSeed =
0 , the random number generator is initialized with the
current time. In this case the results may not be reproducible.
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Input points in image 1 (row coordinate).
Restriction: length(Rows1) >= 5
Input points in image 1 (column coordinate).
Restriction: length(Cols1) == length(Rows1)
Input points in image 2 (row coordinate).
Restriction: length(Rows2) >= 5
Input points in image 2 (column coordinate).
Restriction: length(Cols2) == length(Rows2)
Gray value match metric.
Default value:
'ncc'
"ncc"
"ncc"
"ncc"
"ncc"
List of values: 'ncc' "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd"
Size of gray value masks.
Default value: 10
Typical range of values: 3
≤
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
≤
15
Restriction: MaskSize >= 1
Average row coordinate offset of corresponding points.
Default value: 0
Average column coordinate offset of corresponding points.
Default value: 0
Half height of matching search window.
Default value: 200
Restriction: RowTolerance >= 1
Half width of matching search window.
Default value: 200
Restriction: ColTolerance >= 1
Estimate of the relative rotation of the second image
with respect to the first image.
Default value: 0.0
Suggested values: 0.0, 0.1, -0.1, 0.7854, 1.571, 3.142
Threshold for gray value matching.
Default value: 0.7
Suggested values: 0.9, 0.7, 0.5, 10, 20, 50, 100
Algorithm for the computation of the projective
transformation matrix.
Default value:
'gold_standard'
"gold_standard"
"gold_standard"
"gold_standard"
"gold_standard"
List of values: 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'linear' "linear" "linear" "linear" "linear"
Threshold for the transformation consistency check.
Default value: 1
Restriction: DistanceThreshold > 0
Seed for the random number generator.
Default value: 0
Computed homogeneous projective transformation matrix.
Computed radial distortion coefficient.
Root-Mean-Square transformation error.
Indices of matched input points in image 1.
Indices of matched input points in image 2.
points_foerstner (Image1, 1, 2, 3, 50, 0.1, 'gauss', 'true', \
Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2, 1, 2, 3, 50, 0.1, 'gauss', 'true', \
Rows2, Cols2, _, _, _, _, _, _, _, _)
get_image_size (Image1, Width, Height)
proj_match_points_distortion_ransac (Image1, Image2, Rows1, Cols1, \
Rows2, Cols2, 'ncc', 10, 0, 0, \
Height, Width, 0, 0.5, \
'gold_standard', 1, 42, \
HomMat2D, Kappa, Error, \
Points1, Points2)
CamParDist := ['area_scan_division',0.0,Kappa,1.0,1.0, \
0.5*(Width-1),0.5*(Height-1),Width,Height]
change_radial_distortion_cam_par ('fixed', CamParDist, 0, CamPar)
change_radial_distortion_image (Image1, Image1, Image1Rect, \
CamParDist, CamPar)
change_radial_distortion_image (Image2, Image2, Image2Rect, \
CamParDist, CamPar)
concat_obj (Image1Rect, Image2Rect, ImagesRect)
gen_projective_mosaic (ImagesRect, MosaicImage, 1, 1, 2, HomMat2D, \
'default', 'false', MosaicMatrices2D)
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner ,
points_harris points_harris PointsHarris PointsHarris PointsHarris
vector_to_proj_hom_mat2d_distortion vector_to_proj_hom_mat2d_distortion VectorToProjHomMat2dDistortion VectorToProjHomMat2dDistortion VectorToProjHomMat2dDistortion ,
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ,
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage ,
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints ,
gen_binocular_proj_rectification gen_binocular_proj_rectification GenBinocularProjRectification GenBinocularProjRectification GenBinocularProjRectification ,
projective_trans_image projective_trans_image ProjectiveTransImage ProjectiveTransImage ProjectiveTransImage ,
projective_trans_image_size projective_trans_image_size ProjectiveTransImageSize ProjectiveTransImageSize ProjectiveTransImageSize ,
projective_trans_region projective_trans_region ProjectiveTransRegion ProjectiveTransRegion ProjectiveTransRegion ,
projective_trans_contour_xld projective_trans_contour_xld ProjectiveTransContourXld ProjectiveTransContourXld ProjectiveTransContourXld ,
projective_trans_point_2d projective_trans_point_2d ProjectiveTransPoint2d ProjectiveTransPoint2d ProjectiveTransPoint2d ,
projective_trans_pixel projective_trans_pixel ProjectiveTransPixel ProjectiveTransPixel ProjectiveTransPixel
proj_match_points_distortion_ransac_guided proj_match_points_distortion_ransac_guided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided
proj_match_points_ransac proj_match_points_ransac ProjMatchPointsRansac ProjMatchPointsRansac ProjMatchPointsRansac ,
proj_match_points_ransac_guided proj_match_points_ransac_guided ProjMatchPointsRansacGuided ProjMatchPointsRansacGuided ProjMatchPointsRansacGuided ,
hom_vector_to_proj_hom_mat2d hom_vector_to_proj_hom_mat2d HomVectorToProjHomMat2d HomVectorToProjHomMat2d HomVectorToProjHomMat2d ,
vector_to_proj_hom_mat2d vector_to_proj_hom_mat2d VectorToProjHomMat2d VectorToProjHomMat2d VectorToProjHomMat2d
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
Matching