read_samples_class_svmT_read_samples_class_svmReadSamplesClassSvmReadSamplesClassSvm (Operator)
Name
read_samples_class_svmT_read_samples_class_svmReadSamplesClassSvmReadSamplesClassSvm
— Read the training data of a support vector machine from a file.
Signature
Description
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvm
reads training samples from the file
given by FileNameFileNameFileNameFileNamefileName
and adds them to the training samples
that have already been added to the support vector machine (SVM)
given by SVMHandleSVMHandleSVMHandleSVMHandleSVMHandle
. The SVM must be created with
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvm
before calling
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvm
. As described with
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvm
and write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvm
, the
operators read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvm
,
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvm
, and write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvm
can be used to build up a extensive set of training samples, and
hence to improve the performance of the SVM by retraining the SVM
with extended data sets.
It should be noted that the training samples must have the correct
dimensionality. The feature vectors and target vectors stored in
FileNameFileNameFileNameFileNamefileName
must have the lengths NumFeatures
and
NumClasses
that were specified with
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvm
. The target is stored in vector form for
compatibility reason with the MLP (see
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlp
). If the dimensions are incorrect an
error message is returned.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator modifies the state of the following input parameter:
The value of this parameter may not be shared across multiple threads without external synchronization.
Parameters
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandle
(input_control, state is modified) class_svm →
HClassSvm, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM handle.
FileNameFileNameFileNameFileNamefileName
(input_control) filename.read →
HTupleHTupleHtuple (string) (string) (HString) (char*)
File name.
Result
If the parameters are valid the operator
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvm
returns the value 2 (H_MSG_TRUE). If
necessary, an exception is raised.
Possible Predecessors
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvm
Possible Successors
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvm
Alternatives
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvm
See also
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvm
,
clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvm
Module
Foundation