trainf_ocr_class_mlp_protectedT_trainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected (Operator)
Name
trainf_ocr_class_mlp_protectedT_trainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected
— Train an OCR classifier with data from a (protected) training file.
Signature
void TrainfOcrClassMlpProtected(const HTuple& OCRHandle, const HTuple& TrainingFile, const HTuple& Password, const HTuple& MaxIterations, const HTuple& WeightTolerance, const HTuple& ErrorTolerance, HTuple* Error, HTuple* ErrorLog)
double HOCRMlp::TrainfOcrClassMlpProtected(const HTuple& TrainingFile, const HTuple& Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlpProtected(const HString& TrainingFile, const HString& Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlpProtected(const char* TrainingFile, const char* Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
double HOCRMlp::TrainfOcrClassMlpProtected(const wchar_t* TrainingFile, const wchar_t* Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const
(Windows only)
static void HOperatorSet.TrainfOcrClassMlpProtected(HTuple OCRHandle, HTuple trainingFile, HTuple password, HTuple maxIterations, HTuple weightTolerance, HTuple errorTolerance, out HTuple error, out HTuple errorLog)
double HOCRMlp.TrainfOcrClassMlpProtected(HTuple trainingFile, HTuple password, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)
double HOCRMlp.TrainfOcrClassMlpProtected(string trainingFile, string password, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)
Description
trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected
trains the OCR classifier
OCRHandleOCRHandleOCRHandleOCRHandleOCRHandle
with the training data stored in the OCR
training files given by TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile
. Its functionality
corresponds to the functionality of trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp
,
with the addition that trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected
can process unprotected and protected training files. Protected
training files can be used only with the correct user password
PasswordPasswordPasswordPasswordpassword
. If the number of passwords PasswordPasswordPasswordPasswordpassword
equals 1, then every input file TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile
is checked
with that password, otherwise the number of passwords has to be
equal to the number of input files and the input file at position
n is checked with the password at position n. For unprotected
training files the passwords are ignored.
For a more detailed description of the operator's functionality see
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp
. The concept of protecting OCR training
data in HALCON is described in protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainf
.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Automatically parallelized on internal data level.
This operator modifies the state of the following input parameter:
The value of this parameter may not be shared across multiple threads without external synchronization.
Parameters
OCRHandleOCRHandleOCRHandleOCRHandleOCRHandle
(input_control, state is modified) ocr_mlp →
HOCRMlp, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the OCR classifier.
TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile
(input_control) filename.read(-array) →
HTupleHTupleHtuple (string) (string) (HString) (char*)
Names of the training files.
Default value:
'ocr.trf'
"ocr.trf"
"ocr.trf"
"ocr.trf"
"ocr.trf"
File extension: .trf
, .otr
PasswordPasswordPasswordPasswordpassword
(input_control) string(-array) →
HTupleHTupleHtuple (string) (string) (HString) (char*)
Passwords for protected training files.
MaxIterationsMaxIterationsMaxIterationsMaxIterationsmaxIterations
(input_control) integer →
HTupleHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Maximum number of iterations of the
optimization algorithm.
Default value: 200
Suggested values: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300
WeightToleranceWeightToleranceWeightToleranceWeightToleranceweightTolerance
(input_control) real →
HTupleHTupleHtuple (real) (double) (double) (double)
Threshold for the difference of the weights of
the MLP between two iterations of the
optimization algorithm.
Default value: 1.0
Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001
Restriction: WeightTolerance >= 1.0e-8
ErrorToleranceErrorToleranceErrorToleranceErrorToleranceerrorTolerance
(input_control) real →
HTupleHTupleHtuple (real) (double) (double) (double)
Threshold for the difference of the mean error
of the MLP on the training data between two
iterations of the optimization algorithm.
Default value: 0.01
Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001
Restriction: ErrorTolerance >= 1.0e-8
ErrorErrorErrorErrorerror
(output_control) real →
HTupleHTupleHtuple (real) (double) (double) (double)
Mean error of the MLP on the training data.
ErrorLogErrorLogErrorLogErrorLogerrorLog
(output_control) real-array →
HTupleHTupleHtuple (real) (double) (double) (double)
Mean error of the MLP on the training data as a
function of the number of iterations of the
optimization algorithm.
Result
If the parameters are valid, the operator
trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected
returns the value 2 (H_MSG_TRUE). If necessary,
an exception is raised.
trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected
may return the error 9211 (Matrix is
not positive definite) if Preprocessing
=
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates
that not enough training samples have been stored for each class.
In this case we recommend to change Preprocessing
to
'normalization'"normalization""normalization""normalization""normalization". Another solution can be to add more
training samples.
Possible Predecessors
create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpCreateOcrClassMlp
,
write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfWriteOcrTrainf
,
append_ocr_trainfappend_ocr_trainfAppendOcrTrainfAppendOcrTrainfAppendOcrTrainf
,
write_ocr_trainf_imagewrite_ocr_trainf_imageWriteOcrTrainfImageWriteOcrTrainfImageWriteOcrTrainfImage
,
protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainf
Possible Successors
do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpDoOcrSingleClassMlp
,
do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpDoOcrMultiClassMlp
,
write_ocr_class_mlpwrite_ocr_class_mlpWriteOcrClassMlpWriteOcrClassMlpWriteOcrClassMlp
Alternatives
read_ocr_class_mlpread_ocr_class_mlpReadOcrClassMlpReadOcrClassMlpReadOcrClassMlp
See also
trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp
,
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlp
Module
OCR/OCV