trainf_ocr_class_mlp_protectedT_trainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected (Operator)

Name

trainf_ocr_class_mlp_protectedT_trainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected — Train an OCR classifier with data from a (protected) training file.

Signature

trainf_ocr_class_mlp_protected( : : OCRHandle, TrainingFile, Password, MaxIterations, WeightTolerance, ErrorTolerance : Error, ErrorLog)

Herror T_trainf_ocr_class_mlp_protected(const Htuple OCRHandle, const Htuple TrainingFile, const Htuple Password, const Htuple MaxIterations, const Htuple WeightTolerance, const Htuple ErrorTolerance, Htuple* Error, Htuple* ErrorLog)

void TrainfOcrClassMlpProtected(const HTuple& OCRHandle, const HTuple& TrainingFile, const HTuple& Password, const HTuple& MaxIterations, const HTuple& WeightTolerance, const HTuple& ErrorTolerance, HTuple* Error, HTuple* ErrorLog)

double HOCRMlp::TrainfOcrClassMlpProtected(const HTuple& TrainingFile, const HTuple& Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlpProtected(const HString& TrainingFile, const HString& Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlpProtected(const char* TrainingFile, const char* Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const

double HOCRMlp::TrainfOcrClassMlpProtected(const wchar_t* TrainingFile, const wchar_t* Password, Hlong MaxIterations, double WeightTolerance, double ErrorTolerance, HTuple* ErrorLog) const   (Windows only)

static void HOperatorSet.TrainfOcrClassMlpProtected(HTuple OCRHandle, HTuple trainingFile, HTuple password, HTuple maxIterations, HTuple weightTolerance, HTuple errorTolerance, out HTuple error, out HTuple errorLog)

double HOCRMlp.TrainfOcrClassMlpProtected(HTuple trainingFile, HTuple password, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)

double HOCRMlp.TrainfOcrClassMlpProtected(string trainingFile, string password, int maxIterations, double weightTolerance, double errorTolerance, out HTuple errorLog)

Description

trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected trains the OCR classifier OCRHandleOCRHandleOCRHandleOCRHandleOCRHandle with the training data stored in the OCR training files given by TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile. Its functionality corresponds to the functionality of trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp, with the addition that trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected can process unprotected and protected training files. Protected training files can be used only with the correct user password PasswordPasswordPasswordPasswordpassword. If the number of passwords PasswordPasswordPasswordPasswordpassword equals 1, then every input file TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile is checked with that password, otherwise the number of passwords has to be equal to the number of input files and the input file at position n is checked with the password at position n. For unprotected training files the passwords are ignored.

For a more detailed description of the operator's functionality see trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp. The concept of protecting OCR training data in HALCON is described in protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainf.

Execution Information

This operator modifies the state of the following input parameter:

The value of this parameter may not be shared across multiple threads without external synchronization.

Parameters

OCRHandleOCRHandleOCRHandleOCRHandleOCRHandle (input_control, state is modified)  ocr_mlp HOCRMlp, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the OCR classifier.

TrainingFileTrainingFileTrainingFileTrainingFiletrainingFile (input_control)  filename.read(-array) HTupleHTupleHtuple (string) (string) (HString) (char*)

Names of the training files.

Default value: 'ocr.trf' "ocr.trf" "ocr.trf" "ocr.trf" "ocr.trf"

File extension: .trf, .otr

PasswordPasswordPasswordPasswordpassword (input_control)  string(-array) HTupleHTupleHtuple (string) (string) (HString) (char*)

Passwords for protected training files.

MaxIterationsMaxIterationsMaxIterationsMaxIterationsmaxIterations (input_control)  integer HTupleHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Maximum number of iterations of the optimization algorithm.

Default value: 200

Suggested values: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300

WeightToleranceWeightToleranceWeightToleranceWeightToleranceweightTolerance (input_control)  real HTupleHTupleHtuple (real) (double) (double) (double)

Threshold for the difference of the weights of the MLP between two iterations of the optimization algorithm.

Default value: 1.0

Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001

Restriction: WeightTolerance >= 1.0e-8

ErrorToleranceErrorToleranceErrorToleranceErrorToleranceerrorTolerance (input_control)  real HTupleHTupleHtuple (real) (double) (double) (double)

Threshold for the difference of the mean error of the MLP on the training data between two iterations of the optimization algorithm.

Default value: 0.01

Suggested values: 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001

Restriction: ErrorTolerance >= 1.0e-8

ErrorErrorErrorErrorerror (output_control)  real HTupleHTupleHtuple (real) (double) (double) (double)

Mean error of the MLP on the training data.

ErrorLogErrorLogErrorLogErrorLogerrorLog (output_control)  real-array HTupleHTupleHtuple (real) (double) (double) (double)

Mean error of the MLP on the training data as a function of the number of iterations of the optimization algorithm.

Result

If the parameters are valid, the operator trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.

trainf_ocr_class_mlp_protectedtrainf_ocr_class_mlp_protectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtectedTrainfOcrClassMlpProtected may return the error 9211 (Matrix is not positive definite) if Preprocessing = 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates that not enough training samples have been stored for each class. In this case we recommend to change Preprocessing to 'normalization'"normalization""normalization""normalization""normalization". Another solution can be to add more training samples.

Possible Predecessors

create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpCreateOcrClassMlp, write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfWriteOcrTrainf, append_ocr_trainfappend_ocr_trainfAppendOcrTrainfAppendOcrTrainfAppendOcrTrainf, write_ocr_trainf_imagewrite_ocr_trainf_imageWriteOcrTrainfImageWriteOcrTrainfImageWriteOcrTrainfImage, protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainf

Possible Successors

do_ocr_single_class_mlpdo_ocr_single_class_mlpDoOcrSingleClassMlpDoOcrSingleClassMlpDoOcrSingleClassMlp, do_ocr_multi_class_mlpdo_ocr_multi_class_mlpDoOcrMultiClassMlpDoOcrMultiClassMlpDoOcrMultiClassMlp, write_ocr_class_mlpwrite_ocr_class_mlpWriteOcrClassMlpWriteOcrClassMlpWriteOcrClassMlp

Alternatives

read_ocr_class_mlpread_ocr_class_mlpReadOcrClassMlpReadOcrClassMlpReadOcrClassMlp

See also

trainf_ocr_class_mlptrainf_ocr_class_mlpTrainfOcrClassMlpTrainfOcrClassMlpTrainfOcrClassMlp, train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlp

Module

OCR/OCV