eigenvalues_symmetric_matrixT_eigenvalues_symmetric_matrixEigenvaluesSymmetricMatrixEigenvaluesSymmetricMatrix — Compute the eigenvalues and optionally eigenvectors of a symmetric
matrix.
The operator eigenvalues_symmetric_matrixeigenvalues_symmetric_matrixEigenvaluesSymmetricMatrixEigenvaluesSymmetricMatrixEigenvaluesSymmetricMatrix computes all
eigenvalues and, optionally, eigenvectors of the symmetric
MatrixMatrixMatrixMatrixmatrix. The matrix is defined by the matrix handle
MatrixIDMatrixIDMatrixIDMatrixIDmatrixID. On output, a new matrix EigenvaluesEigenvaluesEigenvaluesEigenvalueseigenvalues
with the eigenvalues in ascending order and, optionally, a new matrix
EigenvectorsEigenvectorsEigenvectorsEigenvectorseigenvectors with the eigenvectors is created. The
operator returns the matrix handles EigenvaluesIDEigenvaluesIDEigenvaluesIDEigenvaluesIDeigenvaluesID and
EigenvectorsIDEigenvectorsIDEigenvectorsIDEigenvectorsIDeigenvectorsID of the matrices EigenvaluesEigenvaluesEigenvaluesEigenvalueseigenvalues and
EigenvectorsEigenvectorsEigenvectorsEigenvectorseigenvectors. Access to the elements of the matrices is
possible e.g. with the operator get_full_matrixget_full_matrixGetFullMatrixGetFullMatrixGetFullMatrix.
The upper triangular part of the input MatrixMatrixMatrixMatrixmatrix must
contain the relevant information of the matrix. The strictly
lower triangular part of the matrix is not referenced. If the
referenced part of the input MatrixMatrixMatrixMatrixmatrix is not of the
specified type, an exception is raised.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
If the parameters are valid, the operator
eigenvalues_symmetric_matrixeigenvalues_symmetric_matrixEigenvaluesSymmetricMatrixEigenvaluesSymmetricMatrixEigenvaluesSymmetricMatrix returns the value 2 (H_MSG_TRUE). If
necessary, an exception is raised.
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.