proj_match_points_distortion_ransac_guided T_proj_match_points_distortion_ransac_guided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided  (Operator) 
Name 
proj_match_points_distortion_ransac_guided T_proj_match_points_distortion_ransac_guided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided  — Compute a projective transformation matrix and the radial distortion
coefficient between two images by finding correspondences between
points based on known approximations of the projective
transformation matrix and the radial distortion coefficient.
Signature 
proj_match_points_distortion_ransac_guided (Image1  , Image2   :  : Rows1  , Cols1  , Rows2  , Cols2  , GrayMatchMethod  , MaskSize  , HomMat2DGuide  , KappaGuide  , DistanceTolerance  , MatchThreshold  , EstimationMethod  , DistanceThreshold  , RandSeed   : HomMat2D  , Kappa  , Error  , Points1  , Points2  )
 
Herror T_proj_match_points_distortion_ransac_guided (const Hobject Image1  , const Hobject Image2  , const Htuple Rows1  , const Htuple Cols1  , const Htuple Rows2  , const Htuple Cols2  , const Htuple GrayMatchMethod  , const Htuple MaskSize  , const Htuple HomMat2DGuide  , const Htuple KappaGuide  , const Htuple DistanceTolerance  , const Htuple MatchThreshold  , const Htuple EstimationMethod  , const Htuple DistanceThreshold  , const Htuple RandSeed  , Htuple* HomMat2D  , Htuple* Kappa  , Htuple* Error  , Htuple* Points1  , Htuple* Points2  )
 
void ProjMatchPointsDistortionRansacGuided (const HObject& Image1  , const HObject& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const HTuple& GrayMatchMethod  , const HTuple& MaskSize  , const HTuple& HomMat2DGuide  , const HTuple& KappaGuide  , const HTuple& DistanceTolerance  , const HTuple& MatchThreshold  , const HTuple& EstimationMethod  , const HTuple& DistanceThreshold  , const HTuple& RandSeed  , HTuple* HomMat2D  , HTuple* Kappa  , HTuple* Error  , HTuple* Points1  , HTuple* Points2  )
HHomMat2D  HImage ::ProjMatchPointsDistortionRansacGuided (const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const HString& GrayMatchMethod  , Hlong MaskSize  , const HHomMat2D& HomMat2DGuide  , double KappaGuide  , double DistanceTolerance  , const HTuple& MatchThreshold  , const HString& EstimationMethod  , const HTuple& DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HImage ::ProjMatchPointsDistortionRansacGuided (const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const HString& GrayMatchMethod  , Hlong MaskSize  , const HHomMat2D& HomMat2DGuide  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const HString& EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HImage ::ProjMatchPointsDistortionRansacGuided (const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const char* GrayMatchMethod  , Hlong MaskSize  , const HHomMat2D& HomMat2DGuide  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const char* EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HImage ::ProjMatchPointsDistortionRansacGuided (const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const wchar_t* GrayMatchMethod  , Hlong MaskSize  , const HHomMat2D& HomMat2DGuide  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const wchar_t* EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const  
            (Windows only)
           
HHomMat2D  HHomMat2D ::ProjMatchPointsDistortionRansacGuided (const HImage& Image1  , const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const HString& GrayMatchMethod  , Hlong MaskSize  , double KappaGuide  , double DistanceTolerance  , const HTuple& MatchThreshold  , const HString& EstimationMethod  , const HTuple& DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HHomMat2D ::ProjMatchPointsDistortionRansacGuided (const HImage& Image1  , const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const HString& GrayMatchMethod  , Hlong MaskSize  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const HString& EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HHomMat2D ::ProjMatchPointsDistortionRansacGuided (const HImage& Image1  , const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const char* GrayMatchMethod  , Hlong MaskSize  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const char* EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const
HHomMat2D  HHomMat2D ::ProjMatchPointsDistortionRansacGuided (const HImage& Image1  , const HImage& Image2  , const HTuple& Rows1  , const HTuple& Cols1  , const HTuple& Rows2  , const HTuple& Cols2  , const wchar_t* GrayMatchMethod  , Hlong MaskSize  , double KappaGuide  , double DistanceTolerance  , Hlong MatchThreshold  , const wchar_t* EstimationMethod  , double DistanceThreshold  , Hlong RandSeed  , double* Kappa  , double* Error  , HTuple* Points1  , HTuple* Points2  ) const  
            (Windows only)
           
 
static void HOperatorSet .ProjMatchPointsDistortionRansacGuided (HObject  image1  , HObject  image2  , HTuple  rows1  , HTuple  cols1  , HTuple  rows2  , HTuple  cols2  , HTuple  grayMatchMethod  , HTuple  maskSize  , HTuple  homMat2DGuide  , HTuple  kappaGuide  , HTuple  distanceTolerance  , HTuple  matchThreshold  , HTuple  estimationMethod  , HTuple  distanceThreshold  , HTuple  randSeed  , out HTuple  homMat2D  , out HTuple  kappa  , out HTuple  error  , out HTuple  points1  , out HTuple  points2  )
HHomMat2D  HImage .ProjMatchPointsDistortionRansacGuided (HImage  image2  , HTuple  rows1  , HTuple  cols1  , HTuple  rows2  , HTuple  cols2  , string grayMatchMethod  , int maskSize  , HHomMat2D  homMat2DGuide  , double kappaGuide  , double distanceTolerance  , HTuple  matchThreshold  , string estimationMethod  , HTuple  distanceThreshold  , int randSeed  , out double kappa  , out double error  , out HTuple  points1  , out HTuple  points2  )
HHomMat2D  HImage .ProjMatchPointsDistortionRansacGuided (HImage  image2  , HTuple  rows1  , HTuple  cols1  , HTuple  rows2  , HTuple  cols2  , string grayMatchMethod  , int maskSize  , HHomMat2D  homMat2DGuide  , double kappaGuide  , double distanceTolerance  , int matchThreshold  , string estimationMethod  , double distanceThreshold  , int randSeed  , out double kappa  , out double error  , out HTuple  points1  , out HTuple  points2  )
HHomMat2D  HHomMat2D .ProjMatchPointsDistortionRansacGuided (HImage  image1  , HImage  image2  , HTuple  rows1  , HTuple  cols1  , HTuple  rows2  , HTuple  cols2  , string grayMatchMethod  , int maskSize  , double kappaGuide  , double distanceTolerance  , HTuple  matchThreshold  , string estimationMethod  , HTuple  distanceThreshold  , int randSeed  , out double kappa  , out double error  , out HTuple  points1  , out HTuple  points2  )
HHomMat2D  HHomMat2D .ProjMatchPointsDistortionRansacGuided (HImage  image1  , HImage  image2  , HTuple  rows1  , HTuple  cols1  , HTuple  rows2  , HTuple  cols2  , string grayMatchMethod  , int maskSize  , double kappaGuide  , double distanceTolerance  , int matchThreshold  , string estimationMethod  , double distanceThreshold  , int randSeed  , out double kappa  , out double error  , out HTuple  points1  , out HTuple  points2  )
 
Description 
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1  ,Cols1 Cols1 Cols1 Cols1 cols1  ) and
(Rows2 Rows2 Rows2 Rows2 rows2 Cols2 Cols2 Cols2 Cols2 cols2  ) in both input images
Image1 Image1 Image1 Image1 image1   and Image2 Image2 Image2 Image2 image2  , which must have identical size,
and given known approximations HomMat2DGuide HomMat2DGuide HomMat2DGuide HomMat2DGuide homMat2DGuide   and
KappaGuide KappaGuide KappaGuide KappaGuide kappaGuide   for the transformation matrix and the radial
distortion coefficient between Image1 Image1 Image1 Image1 image1   and Image2 Image2 Image2 Image2 image2  ,
proj_match_points_distortion_ransac_guided proj_match_points_distortion_ransac_guided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided  automatically
determines corresponding points, the homogeneous projective
transformation matrix HomMat2D HomMat2D HomMat2D HomMat2D homMat2D  , and the radial distortion
coefficient Kappa Kappa Kappa Kappa kappa 
  
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
   that optimally fulfill the
following equation:
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
     
     
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
Here, 
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
   and
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
denote image points that are obtained by undistorting the input
image points with the division model (see
Calibration ):
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
  
     
   
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
Here, 
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
     
   
  
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
     
   
   denote the
distorted image points, specified relative to the image center, and
w and h denote the width and height of the input images.  Thus,
proj_match_points_distortion_ransac_guided proj_match_points_distortion_ransac_guided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided ProjMatchPointsDistortionRansacGuided  assumes that the
principal point of the camera, i.e., the center of the radial
distortions, lies at the center of the image.
The returned Kappa Kappa Kappa Kappa kappa   can be used to construct camera
parameters that can be used to rectify images or points (see
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar  ,
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage  , and
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints  ):
  
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
    
       
     
   
  
     
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
     
   
  
     
   
  
     
     
     
     
   
  
     
   
  
     
     
     
   
  
     
     
     
     
     
     
   
  
     
     
   
  
     
   
  
     
     
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
     
     
     
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
     
   
  
The approximations HomMat2DGuide HomMat2DGuide HomMat2DGuide HomMat2DGuide homMat2DGuide   and KappaGuide KappaGuide KappaGuide KappaGuide kappaGuide  
can, for example, be calculated with
proj_match_points_distortion_ransac proj_match_points_distortion_ransac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac   on lower resolution
versions of Image1 Image1 Image1 Image1 image1   and Image2 Image2 Image2 Image2 image2  .  See the example
below.
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner   or
points_harris points_harris PointsHarris PointsHarris PointsHarris  .  The matching itself is carried out in two
steps: first, gray value correlations of mask windows around the
input points in the first and the second image are determined and an
initial matching between them is generated using the similarity of
the windows in both images.  Then, the RANSAC algorithm is applied
to find the projective transformation matrix and radial distortion
coefficient that maximizes the number of correspondences under the
above constraint.
The size of the mask windows used for the matching is
MaskSize MaskSize MaskSize MaskSize maskSize   x
MaskSize MaskSize MaskSize MaskSize maskSize  .  Three metrics for the correlation can be
selected.  If GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod   has the value 'ssd' "ssd" "ssd" "ssd" "ssd"  ,
the sum of the squared gray value differences is used,
'sad' "sad" "sad" "sad" "sad"   means the sum of absolute differences, and
'ncc' "ncc" "ncc" "ncc" "ncc"   is the normalized cross correlation.  For details
please refer to binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity  . The metric is minimized
('ssd' "ssd" "ssd" "ssd" "ssd"  , 'sad' "sad" "sad" "sad" "sad"  ) or maximized ('ncc' "ncc" "ncc" "ncc" "ncc"  ) over
all possible point pairs. A thus found matching is only accepted if
the value of the metric is below the value of
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold   ('ssd' "ssd" "ssd" "ssd" "ssd"  , 'sad' "sad" "sad" "sad" "sad"  ) or above
that value ('ncc' "ncc" "ncc" "ncc" "ncc"  ).
To increase the algorithm's performance, the search area for the
match candidates is limited based on the approximate transformation
specified by HomMat2DGuide HomMat2DGuide HomMat2DGuide HomMat2DGuide homMat2DGuide   and KappaGuide KappaGuide KappaGuide KappaGuide kappaGuide  .  Only
points within a distance of DistanceTolerance DistanceTolerance DistanceTolerance DistanceTolerance distanceTolerance   around the
point in Image2 Image2 Image2 Image2 image2   that is obtained when transforming a point
in Image1 Image1 Image1 Image1 image1   via HomMat2DGuide HomMat2DGuide HomMat2DGuide HomMat2DGuide homMat2DGuide   and
KappaGuide KappaGuide KappaGuide KappaGuide kappaGuide   are considered for the matching.
After the initial matching has been completed, a randomized search
algorithm (RANSAC) is used to determine the projective
transformation matrix HomMat2D HomMat2D HomMat2D HomMat2D homMat2D   and the radial distortion
coefficient Kappa Kappa Kappa Kappa kappa  .  It tries to find the parameters that
are consistent with a maximum number of correspondences.  For a
point to be accepted, the distance to its corresponding transformed
point must not exceed the threshold DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold  .
Consequently, DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold   should be smaller than
DistanceTolerance DistanceTolerance DistanceTolerance DistanceTolerance distanceTolerance  .
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod   determines which algorithm
is used to compute the projective transformation matrix.  A linear
algorithm is used if EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod   is set to
'linear' "linear" "linear" "linear" "linear"  .  This algorithm is very fast and returns accurate
results for small to moderate noise of the point coordinates and for
most distortions (except for small distortions).  For
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod   = 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard"  , a
mathematically optimal but slower optimization is used, which
minimizes the geometric reprojection error.  In general, it is
preferable to use EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod   =
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard"  .
The value Error Error Error Error error   indicates the overall quality of the
estimation procedure and is the mean symmetric euclidean distance in
pixels between the points and their corresponding transformed
points.
Point pairs consistent with the above constraints are considered to
be corresponding points.  Points1 Points1 Points1 Points1 points1   contains the indices of
the matched input points from the first image and Points2 Points2 Points2 Points2 points2  
contains the indices of the corresponding points in the second
image.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed   can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results.  If RandSeed RandSeed RandSeed RandSeed randSeed   is set to a positive
number, the operator returns the same result on every call with the
same parameters because the internally used random number generator
is initialized with RandSeed RandSeed RandSeed RandSeed randSeed  .  If RandSeed RandSeed RandSeed RandSeed randSeed   =
0 , the random number generator is initialized with the
current time.  In this case the results may not be reproducible.
Execution Information 
  Multithreading type: reentrant (runs in parallel with non-exclusive operators). 
Multithreading scope: global (may be called from any thread). 
  Processed without parallelization. 
 
Parameters 
  
Image1 Image1 Image1 Image1 image1   (input_object)  singlechannelimage → object HImage HImage Hobject  (byte / uint2) 
 
Input image 1.
 
  
Image2 Image2 Image2 Image2 image2   (input_object)  singlechannelimage → object HImage HImage Hobject  (byte / uint2) 
 
Input image 2.
 
  
Rows1 Rows1 Rows1 Rows1 rows1   (input_control)  point.y-array → HTuple HTuple Htuple  (real /  integer)  (double  /  int /  long)  (double  /  Hlong)  (double  /  Hlong)  
 
Input points in image 1 (row coordinate).
Restriction:  length(Rows1) >= 5
 
  
Cols1 Cols1 Cols1 Cols1 cols1   (input_control)  point.x-array → HTuple HTuple Htuple  (real /  integer)  (double  /  int /  long)  (double  /  Hlong)  (double  /  Hlong)  
 
Input points in image 1 (column coordinate).
Restriction:  length(Cols1) == length(Rows1)
 
  
Rows2 Rows2 Rows2 Rows2 rows2   (input_control)  point.y-array → HTuple HTuple Htuple  (real /  integer)  (double  /  int /  long)  (double  /  Hlong)  (double  /  Hlong)  
 
Input points in image 2 (row coordinate).
Restriction:  length(Rows2) >= 5
 
  
Cols2 Cols2 Cols2 Cols2 cols2   (input_control)  point.x-array → HTuple HTuple Htuple  (real /  integer)  (double  /  int /  long)  (double  /  Hlong)  (double  /  Hlong)  
 
Input points in image 2 (column coordinate).
Restriction:  length(Cols2) == length(Rows2)
 
  
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod   (input_control)  string → HTuple HTuple Htuple  (string)  (string )  (HString )  (char* )  
 
Gray value match metric.
Default value:  
    'ncc' 
    "ncc" 
    "ncc" 
    "ncc" 
    "ncc" 
List of values:  'ncc' "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd" 
 
  
MaskSize MaskSize MaskSize MaskSize maskSize   (input_control)  integer → HTuple HTuple Htuple  (integer)  (int  /  long)  (Hlong )  (Hlong )  
 
Size of gray value masks.
Default value:  10
Typical range of values:  3
          ≤
        
    MaskSize 
    MaskSize 
    MaskSize 
    MaskSize 
    maskSize 
    
          ≤
          15
Restriction:  MaskSize >= 1
 
  
HomMat2DGuide HomMat2DGuide HomMat2DGuide HomMat2DGuide homMat2DGuide   (input_control)  hom_mat2d → HHomMat2D , HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Approximation of the homogeneous projective
transformation matrix between the two images.
 
  
KappaGuide KappaGuide KappaGuide KappaGuide kappaGuide   (input_control)  real → HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Approximation of the radial distortion coefficient
in the two images.
 
  
DistanceTolerance DistanceTolerance DistanceTolerance DistanceTolerance distanceTolerance   (input_control)  real → HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Tolerance for the matching search window.
Default value:  20.0
Suggested values:  0.2, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0, 50.0
Restriction:  DistanceTolerance > 0
 
  
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold   (input_control)  number → HTuple HTuple Htuple  (integer /  real)  (int  /  long /  double)  (Hlong  /  double)  (Hlong  /  double)  
 
Threshold for gray value matching.
Default value:  0.7
Suggested values:  0.9, 0.7, 0.5, 10, 20, 50, 100
 
  
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod   (input_control)  string → HTuple HTuple Htuple  (string)  (string )  (HString )  (char* )  
 
Algorithm for the computation of the projective
transformation matrix.
Default value:  
    'gold_standard' 
    "gold_standard" 
    "gold_standard" 
    "gold_standard" 
    "gold_standard" 
List of values:  'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'linear' "linear" "linear" "linear" "linear" 
 
  
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold   (input_control)  number → HTuple HTuple Htuple  (real /  integer)  (double  /  int /  long)  (double  /  Hlong)  (double  /  Hlong)  
 
Threshold for transformation consistency check.
Default value:  1
Restriction:  DistanceThreshold > 0
 
  
RandSeed RandSeed RandSeed RandSeed randSeed   (input_control)  integer → HTuple HTuple Htuple  (integer)  (int  /  long)  (Hlong )  (Hlong )  
 
Seed for the random number generator.
Default value:  0
 
  
HomMat2D HomMat2D HomMat2D HomMat2D homMat2D   (output_control)  hom_mat2d → HHomMat2D , HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Computed homogeneous projective transformation matrix.
 
  
Kappa Kappa Kappa Kappa kappa   (output_control)  real → HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Computed radial distortion coefficient.
 
  
Error Error Error Error error   (output_control)  real → HTuple HTuple Htuple  (real)  (double )  (double )  (double )  
 
Root-Mean-Square transformation error.
 
  
Points1 Points1 Points1 Points1 points1   (output_control)  integer-array → HTuple HTuple Htuple  (integer)  (int  /  long)  (Hlong )  (Hlong )  
 
Indices of matched input points in image 1.
 
  
Points2 Points2 Points2 Points2 points2   (output_control)  integer-array → HTuple HTuple Htuple  (integer)  (int  /  long)  (Hlong )  (Hlong )  
 
Indices of matched input points in image 2.
 
Example (HDevelop) 
Factor := 0.5
zoom_image_factor (Image1, Image1Zoomed, Factor, Factor, 'constant')
zoom_image_factor (Image2, Image2Zoomed, Factor, Factor, 'constant')
points_foerstner (Image1Zoomed, 1, 2, 3, 200, 0.3, 'gauss', 'true', \
                  Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2Zoomed, 1, 2, 3, 200, 0.3, 'gauss', 'true', \
                  Rows2, Cols2, _, _, _, _, _, _, _, _)
get_image_size (Image1Zoomed, Width, Height)
proj_match_points_distortion_ransac (Image1Zoomed, Image2Zoomed, \
                                     Rows1, Cols1, Rows2, Cols2, \
                                     'ncc', 10, 0, 0, Height, Width, \
                                     0, 0.5, 'gold_standard', 2, 0, \
                                     HomMat2D, Kappa, Error, \
                                     Points1, Points2)
hom_mat2d_scale_local (HomMat2D, Factor, Factor, HomMat2DGuide)
hom_mat2d_scale (HomMat2DGuide, 1.0/Factor, 1.0/Factor, 0, 0, \
                 HomMat2DGuide)
KappaGuide := Kappa*Factor*Factor
points_foerstner (Image1, 1, 2, 3, 200, 0.3, 'gauss', 'true', \
                  Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2, 1, 2, 3, 200, 0.3, 'gauss', 'true', \
                  Rows2, Cols2, _, _, _, _, _, _, _, _)
proj_match_points_distortion_ransac_guided (Image1, Image2, \
                                            Rows1, Cols1, \
                                            Rows2, Cols2, \
                                            'ncc', 10, \
                                            HomMat2DGuide, \
                                            KappaGuide, 5, 0.5, \
                                            'gold_standard', 2, 0, \
                                            HomMat2D, Kappa, \
                                            Error, Points1, Points2)
get_image_size (Image1, Width, Height)
CamParDist := ['area_scan_division',0.0,Kappa,1.0,1.0, \
               0.5*(Width-1),0.5*(Height-1),Width,Height]
change_radial_distortion_cam_par ('fixed', CamParDist, 0, CamPar)
change_radial_distortion_image (Image1, Image1, Image1Rect, \
                                CamParDist, CamPar)
change_radial_distortion_image (Image2, Image2, Image2Rect, \
                                CamParDist, CamPar)
concat_obj (Image1Rect, Image2Rect, ImagesRect)
gen_projective_mosaic (ImagesRect, MosaicImage, 1, 1, 2, HomMat2D, \
                       'default', 'false', MosaicMatrices2D)
 
Possible Predecessors 
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner , 
points_harris points_harris PointsHarris PointsHarris PointsHarris 
Possible Successors 
vector_to_proj_hom_mat2d_distortion vector_to_proj_hom_mat2d_distortion VectorToProjHomMat2dDistortion VectorToProjHomMat2dDistortion VectorToProjHomMat2dDistortion , 
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar , 
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage , 
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints , 
gen_binocular_proj_rectification gen_binocular_proj_rectification GenBinocularProjRectification GenBinocularProjRectification GenBinocularProjRectification , 
projective_trans_image projective_trans_image ProjectiveTransImage ProjectiveTransImage ProjectiveTransImage , 
projective_trans_image_size projective_trans_image_size ProjectiveTransImageSize ProjectiveTransImageSize ProjectiveTransImageSize , 
projective_trans_region projective_trans_region ProjectiveTransRegion ProjectiveTransRegion ProjectiveTransRegion , 
projective_trans_contour_xld projective_trans_contour_xld ProjectiveTransContourXld ProjectiveTransContourXld ProjectiveTransContourXld , 
projective_trans_point_2d projective_trans_point_2d ProjectiveTransPoint2d ProjectiveTransPoint2d ProjectiveTransPoint2d , 
projective_trans_pixel projective_trans_pixel ProjectiveTransPixel ProjectiveTransPixel ProjectiveTransPixel 
Alternatives 
proj_match_points_distortion_ransac proj_match_points_distortion_ransac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac ProjMatchPointsDistortionRansac 
See also 
proj_match_points_ransac proj_match_points_ransac ProjMatchPointsRansac ProjMatchPointsRansac ProjMatchPointsRansac , 
proj_match_points_ransac_guided proj_match_points_ransac_guided ProjMatchPointsRansacGuided ProjMatchPointsRansacGuided ProjMatchPointsRansacGuided , 
hom_vector_to_proj_hom_mat2d hom_vector_to_proj_hom_mat2d HomVectorToProjHomMat2d HomVectorToProjHomMat2d HomVectorToProjHomMat2d , 
vector_to_proj_hom_mat2d vector_to_proj_hom_mat2d VectorToProjHomMat2d VectorToProjHomMat2d VectorToProjHomMat2d 
References 
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
 
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
Module 
Matching