fit_line_contour_xld fit_line_contour_xld FitLineContourXld FitLineContourXld (Operator)
Name
fit_line_contour_xld fit_line_contour_xld FitLineContourXld FitLineContourXld
— Approximate XLD contours by line segments.
Signature
fit_line_contour_xld (Contours : : Algorithm , MaxNumPoints , ClippingEndPoints , Iterations , ClippingFactor : RowBegin , ColBegin , RowEnd , ColEnd , Nr , Nc , Dist )
Herror fit_line_contour_xld (const Hobject Contours , const char* Algorithm , const Hlong MaxNumPoints , const Hlong ClippingEndPoints , const Hlong Iterations , double ClippingFactor , double* RowBegin , double* ColBegin , double* RowEnd , double* ColEnd , double* Nr , double* Nc , double* Dist )
Herror T_fit_line_contour_xld (const Hobject Contours , const Htuple Algorithm , const Htuple MaxNumPoints , const Htuple ClippingEndPoints , const Htuple Iterations , const Htuple ClippingFactor , Htuple* RowBegin , Htuple* ColBegin , Htuple* RowEnd , Htuple* ColEnd , Htuple* Nr , Htuple* Nc , Htuple* Dist )
void FitLineContourXld (const HObject& Contours , const HTuple& Algorithm , const HTuple& MaxNumPoints , const HTuple& ClippingEndPoints , const HTuple& Iterations , const HTuple& ClippingFactor , HTuple* RowBegin , HTuple* ColBegin , HTuple* RowEnd , HTuple* ColEnd , HTuple* Nr , HTuple* Nc , HTuple* Dist )
void HXLDCont ::FitLineContourXld (const HString& Algorithm , Hlong MaxNumPoints , Hlong ClippingEndPoints , Hlong Iterations , double ClippingFactor , HTuple* RowBegin , HTuple* ColBegin , HTuple* RowEnd , HTuple* ColEnd , HTuple* Nr , HTuple* Nc , HTuple* Dist ) const
void HXLDCont ::FitLineContourXld (const HString& Algorithm , Hlong MaxNumPoints , Hlong ClippingEndPoints , Hlong Iterations , double ClippingFactor , double* RowBegin , double* ColBegin , double* RowEnd , double* ColEnd , double* Nr , double* Nc , double* Dist ) const
void HXLDCont ::FitLineContourXld (const char* Algorithm , Hlong MaxNumPoints , Hlong ClippingEndPoints , Hlong Iterations , double ClippingFactor , double* RowBegin , double* ColBegin , double* RowEnd , double* ColEnd , double* Nr , double* Nc , double* Dist ) const
void HXLDCont ::FitLineContourXld (const wchar_t* Algorithm , Hlong MaxNumPoints , Hlong ClippingEndPoints , Hlong Iterations , double ClippingFactor , double* RowBegin , double* ColBegin , double* RowEnd , double* ColEnd , double* Nr , double* Nc , double* Dist ) const
(Windows only)
static void HOperatorSet .FitLineContourXld (HObject contours , HTuple algorithm , HTuple maxNumPoints , HTuple clippingEndPoints , HTuple iterations , HTuple clippingFactor , out HTuple rowBegin , out HTuple colBegin , out HTuple rowEnd , out HTuple colEnd , out HTuple nr , out HTuple nc , out HTuple dist )
void HXLDCont .FitLineContourXld (string algorithm , int maxNumPoints , int clippingEndPoints , int iterations , double clippingFactor , out HTuple rowBegin , out HTuple colBegin , out HTuple rowEnd , out HTuple colEnd , out HTuple nr , out HTuple nc , out HTuple dist )
void HXLDCont .FitLineContourXld (string algorithm , int maxNumPoints , int clippingEndPoints , int iterations , double clippingFactor , out double rowBegin , out double colBegin , out double rowEnd , out double colEnd , out double nr , out double nc , out double dist )
Description
fit_line_contour_xld fit_line_contour_xld FitLineContourXld FitLineContourXld FitLineContourXld
approximates the XLD contours
Contours Contours Contours Contours contours
by line segments. It does not perform a
segmentation of the input contours. Thus, one has to make sure that
each contour corresponds to one and only one line segment. The
operator returns for each contour the start point
(RowBegin RowBegin RowBegin RowBegin rowBegin
, ColBegin ColBegin ColBegin ColBegin colBegin
), the end point
(RowEnd RowEnd RowEnd RowEnd rowEnd
, ColEnd ColEnd ColEnd ColEnd colEnd
), and the regression line to the
contour given by the normal vector (Nr Nr Nr Nr nr
, Nc Nc Nc Nc nc
) of the
line and its distance Dist Dist Dist Dist dist
from the origin, i.e., the line
equation is given by
.
The algorithm used for the fitting of lines can be selected via
Algorithm Algorithm Algorithm Algorithm algorithm
:
'regression' "regression" "regression" "regression" "regression" :
Standard 'least squares' line fitting.
'huber' "huber" "huber" "huber" "huber" :
Weighted 'least squares' line fitting, where the impact of outliers
is decreased based on the approach of Huber (see below).
'tukey' "tukey" "tukey" "tukey" "tukey" :
Weighted 'least squares' line fitting, where outliers
are ignored based on the approach of Tukey (see below).
'drop' "drop" "drop" "drop" "drop" :
'least squares' line fitting, where outliers are ignored. In
particular, all contour points further away from the contour than the mean
distance to the regression line multiplied with the ClippingFactor ClippingFactor ClippingFactor ClippingFactor clippingFactor
(see below) are ignored for the calculation of the undistorted regression
line.
'gauss' "gauss" "gauss" "gauss" "gauss" :
Weighted 'least squares' line fitting, where the impact of outliers
is decreased based on the mean value and the standard deviation of
the distances of all contour points from the approximating line.
For 'huber', 'tukey', and 'drop' a robust error statistics is used to
estimate the standard deviation of the distances from the contour points
without outliers from the approximating line. The parameter
ClippingFactor ClippingFactor ClippingFactor ClippingFactor clippingFactor
(a scaling factor for the standard deviation)
controls the amount of outliers: The smaller the value chosen for
ClippingFactor ClippingFactor ClippingFactor ClippingFactor clippingFactor
the more outliers are detected. The detection of
outliers is repeated. The parameter Iterations Iterations Iterations Iterations iterations
specifies the number
of iterations. In the modus 'regression' this value is ignored. Note that in
the approach of Tukey ('tukey'), the outliers are removed before performing
the approximation and all other points are weighted, whereas in the approach
of Huber ('huber'), the outliers still have a small influence. Particularly,
for outliers the optimization is influenced linearly and for points with a
smaller distance it is influenced quadratically. In practice, the approach of
Tukey is recommended.
To reduce the computational load, the fitting of lines can be
restricted to a subset of the contour points: If a value other than
-1 is assigned to MaxNumPoints MaxNumPoints MaxNumPoints MaxNumPoints maxNumPoints
, only up to
MaxNumPoints MaxNumPoints MaxNumPoints MaxNumPoints maxNumPoints
points - uniformly distributed over the
contour - are used.
The start point and the end point of a line segment is determined by
projecting the first and the last point of the corresponding contour
to the approximating line. Due to artifacts in the pre-processing
the start and end points of a contour might be faulty. Therefore, it
is possible to exclude ClippingEndPoints ClippingEndPoints ClippingEndPoints ClippingEndPoints clippingEndPoints
points at the beginning
and at the end of a contour from the line fitting. However, they are
still used for the determination of the start point and the end
point of the line segment.
The minimum necessary number of contour points for fitting a line is two.
Therefore, it is required that the number of contour points is at least
.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
Contours Contours Contours Contours contours
(input_object) xld_cont(-array) →
object HXLDCont HXLDCont Hobject
Input contours.
Algorithm Algorithm Algorithm Algorithm algorithm
(input_control) string →
HTuple HTuple Htuple (string) (string ) (HString ) (char* )
Algorithm for the fitting of lines.
Default value:
'tukey'
"tukey"
"tukey"
"tukey"
"tukey"
List of values: 'drop' "drop" "drop" "drop" "drop" , 'gauss' "gauss" "gauss" "gauss" "gauss" , 'huber' "huber" "huber" "huber" "huber" , 'regression' "regression" "regression" "regression" "regression" , 'tukey' "tukey" "tukey" "tukey" "tukey"
MaxNumPoints MaxNumPoints MaxNumPoints MaxNumPoints maxNumPoints
(input_control) integer →
HTuple HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Maximum number of contour points used for the
computation (-1 for all points).
Default value: -1
Restriction: MaxNumPoints >= 2
ClippingEndPoints ClippingEndPoints ClippingEndPoints ClippingEndPoints clippingEndPoints
(input_control) integer →
HTuple HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Number of points at the beginning and at the end of the
contours to be ignored for the fitting.
Default value: 0
Restriction: ClippingEndPoints >= 0
Iterations Iterations Iterations Iterations iterations
(input_control) integer →
HTuple HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Maximum number of iterations (unused for 'regression').
Default value: 5
Restriction: Iterations >= 0
ClippingFactor ClippingFactor ClippingFactor ClippingFactor clippingFactor
(input_control) real →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Clipping factor for the elimination of outliers
(typical: 1.0 for 'huber' and 'drop' and 2.0 for
'tukey').
Default value: 2.0
Suggested values: 1.0, 1.5, 2.0, 2.5, 3.0
Restriction: ClippingFactor > 0
RowBegin RowBegin RowBegin RowBegin rowBegin
(output_control) line.begin.y(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Row coordinates of the starting points of the line
segments.
ColBegin ColBegin ColBegin ColBegin colBegin
(output_control) line.begin.x(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Column coordinates of the starting points of the line
segments.
RowEnd RowEnd RowEnd RowEnd rowEnd
(output_control) line.end.y(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Row coordinates of the end points of the line
segments.
ColEnd ColEnd ColEnd ColEnd colEnd
(output_control) line.end.x(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Column coordinates of the end points of the line
segments.
Nr Nr Nr Nr nr
(output_control) number(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Line parameter: Row coordinate of the normal vector
Nc Nc Nc Nc nc
(output_control) number(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Line parameter: Column coordinate of the normal vector
Dist Dist Dist Dist dist
(output_control) number(-array) →
HTuple HTuple Htuple (real) (double ) (double ) (double )
Line parameter: Distance of the line from the origin
Example (HDevelop)
read_image (Image, 'mreut')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 20, 40)
gen_polygons_xld (Edges, Polygons, 'ramer', 2)
split_contours_xld (Polygons, Contours, 'polygon', 1, 5)
fit_line_contour_xld (Contours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
Example (HDevelop)
read_image (Image, 'mreut')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 20, 40)
gen_polygons_xld (Edges, Polygons, 'ramer', 2)
split_contours_xld (Polygons, Contours, 'polygon', 1, 5)
fit_line_contour_xld (Contours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
Example (HDevelop)
read_image (Image, 'mreut')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 20, 40)
gen_polygons_xld (Edges, Polygons, 'ramer', 2)
split_contours_xld (Polygons, Contours, 'polygon', 1, 5)
fit_line_contour_xld (Contours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
Example (HDevelop)
read_image (Image, 'mreut')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 20, 40)
gen_polygons_xld (Edges, Polygons, 'ramer', 2)
split_contours_xld (Polygons, Contours, 'polygon', 1, 5)
fit_line_contour_xld (Contours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
Example (HDevelop)
read_image (Image, 'mreut')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 20, 40)
gen_polygons_xld (Edges, Polygons, 'ramer', 2)
split_contours_xld (Polygons, Contours, 'polygon', 1, 5)
fit_line_contour_xld (Contours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
Result
fit_line_contour_xld fit_line_contour_xld FitLineContourXld FitLineContourXld FitLineContourXld
returns 2 (H_MSG_TRUE) if all parameter values
are correct, and line segments could be fitted to the input contours.
If the input is empty the behaviour can be set via
set_system('no_object_result',<Result>) set_system("no_object_result",<Result>) SetSystem("no_object_result",<Result>) SetSystem("no_object_result",<Result>) SetSystem("no_object_result",<Result>)
.
If necessary, an exception is raised.
If the parameter ClippingFactor ClippingFactor ClippingFactor ClippingFactor clippingFactor
is chosen too small, i.e.,
all points are classified as outliers, the error 3264 is raised.
Possible Predecessors
gen_contours_skeleton_xld gen_contours_skeleton_xld GenContoursSkeletonXld GenContoursSkeletonXld GenContoursSkeletonXld
,
lines_gauss lines_gauss LinesGauss LinesGauss LinesGauss
,
lines_facet lines_facet LinesFacet LinesFacet LinesFacet
,
edges_sub_pix edges_sub_pix EdgesSubPix EdgesSubPix EdgesSubPix
,
smooth_contours_xld smooth_contours_xld SmoothContoursXld SmoothContoursXld SmoothContoursXld
Possible Successors
disp_line disp_line DispLine DispLine DispLine
,
line_orientation line_orientation LineOrientation LineOrientation LineOrientation
See also
regress_contours_xld regress_contours_xld RegressContoursXld RegressContoursXld RegressContoursXld
,
get_regress_params_xld get_regress_params_xld GetRegressParamsXld GetRegressParamsXld GetRegressParamsXld
Module
Foundation