add_dl_pruning_batchT_add_dl_pruning_batchAddDlPruningBatchAddDlPruningBatchadd_dl_pruning_batch (Operator)
Name
add_dl_pruning_batchT_add_dl_pruning_batchAddDlPruningBatchAddDlPruningBatchadd_dl_pruning_batch
— Calculate scores to prune a deep learning model.
Signature
Description
add_dl_pruning_batchadd_dl_pruning_batchAddDlPruningBatchAddDlPruningBatchAddDlPruningBatchadd_dl_pruning_batch
calculates pruning scores for the deep
learning model DLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPrunedlmodel_handle_to_prune
.
More precisely, the scores are calculated on the images given in
DLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchdlsample_batch
and internally accumulated by each call of
add_dl_pruning_batchadd_dl_pruning_batchAddDlPruningBatchAddDlPruningBatchAddDlPruningBatchadd_dl_pruning_batch
in the pruning data handle
DLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandledlpruning_handle
.
The parameter DLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPrunedlmodel_handle_to_prune
specifies the deep learning
model to use.
Note that add_dl_pruning_batchadd_dl_pruning_batchAddDlPruningBatchAddDlPruningBatchAddDlPruningBatchadd_dl_pruning_batch
supports only deep learning
models of type 'classification'"classification""classification""classification""classification""classification".
The parameter DLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandledlpruning_handle
specifies the pruning data handle,
which is used to pass information as e.g., the accumulated scores or the
pruning mode.
See create_dl_pruningcreate_dl_pruningCreateDlPruningCreateDlPruningCreateDlPruningcreate_dl_pruning
for further information about implemented
pruning modes.
The parameter DLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchdlsample_batch
specifies the batch with input images
based on which the scores are calculated.
Note that the number of images in the tuple DLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchdlsample_batch
needs to
be equal to the value set for the model parameter 'batch_size'"batch_size""batch_size""batch_size""batch_size""batch_size".
For an explanation of the concept of deep learning see the introduction of
chapter Deep Learning.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
DLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPruneDLModelHandleToPrunedlmodel_handle_to_prune
(input_control) dl_model →
HDlModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of a deep learning model to prune.
DLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandleDLPruningHandledlpruning_handle
(input_control) dl_pruning →
HDlPrune, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Pruning data handle.
DLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchDLSampleBatchdlsample_batch
(input_control) dict-array →
HDict, HTupleSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Tuple of dictionaries with input images.
Possible Predecessors
read_dl_modelread_dl_modelReadDlModelReadDlModelReadDlModelread_dl_model
,
create_dl_pruningcreate_dl_pruningCreateDlPruningCreateDlPruningCreateDlPruningcreate_dl_pruning
,
set_dl_pruning_paramset_dl_pruning_paramSetDlPruningParamSetDlPruningParamSetDlPruningParamset_dl_pruning_param
Possible Successors
get_dl_pruning_paramget_dl_pruning_paramGetDlPruningParamGetDlPruningParamGetDlPruningParamget_dl_pruning_param
,
gen_dl_pruned_modelgen_dl_pruned_modelGenDlPrunedModelGenDlPrunedModelGenDlPrunedModelgen_dl_pruned_model
Module
Deep Learning Training