add_samples_image_class_knnT_add_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn (Operator)
Name
add_samples_image_class_knnT_add_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn — Add training samples from an image to the training data of a
k-Nearest-Neighbor classifier.
Signature
Description
add_samples_image_class_knnadd_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn adds training samples from the
ImageImageImageImageimageimage to the k-Nearest-Neighbor (k-NN) given by
KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle. add_samples_image_class_knnadd_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn is used to
store the training samples before a classifier is used for the
pixel classification of multichannel images with
classify_image_class_knnclassify_image_class_knnClassifyImageClassKnnClassifyImageClassKnnClassifyImageClassKnnclassify_image_class_knn.
add_samples_image_class_knnadd_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn works analogously to
add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn. The ImageImageImageImageimageimage must have a number
of channels equal to NumDimNumDimNumDimNumDimnumDimnum_dim, as specified with
create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn. ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions must be a tuple
containing of at least 2 regions. The order of the regions
in ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions determines the class of the pixels. If
there are no samples for a particular class in ImageImageImageImageimageimage an
empty region must be passed at the position of the class in
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions. With this mechanism it is possible to use
multiple images to add training samples for all relevant classes to
the k-NN classifier by calling add_samples_image_class_knnadd_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn
multiple times with different images and suitably chosen regions. The
regions in ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions should contain representative
training samples for the respective classes. Hence, they do not need
to cover the entire image. The regions in ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions should
not overlap each other, as these samples from overlapping areas would be
assigned to multiple classes in the training data, which may lead to a lower
classification performance.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
Parameters
ImageImageImageImageimageimage (input_object) (multichannel-)image → objectHImageHObjectHImageHobject (byte / cyclic / direction / int1 / int2 / uint2 / int4 / real)
Training image.
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions (input_object) region-array → objectHRegionHObjectHRegionHobject
Regions of the classes to be trained.
KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle (input_control, state is modified) class_knn → HClassKnn, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the k-NN classifier.
Result
If the parameters are valid, the operator
add_samples_image_class_knnadd_samples_image_class_knnAddSamplesImageClassKnnAddSamplesImageClassKnnAddSamplesImageClassKnnadd_samples_image_class_knn returns the value 2 (H_MSG_TRUE). If
necessary an exception is raised.
Possible Predecessors
create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn
Possible Successors
train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn
Alternatives
add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn
See also
classify_image_class_knnclassify_image_class_knnClassifyImageClassKnnClassifyImageClassKnnClassifyImageClassKnnclassify_image_class_knn,
add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn,
add_samples_image_class_svmadd_samples_image_class_svmAddSamplesImageClassSvmAddSamplesImageClassSvmAddSamplesImageClassSvmadd_samples_image_class_svm
Module
Foundation