coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff (Operator)

Name

coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff — Perform a coherence enhancing diffusion of an image.

Signature

coherence_enhancing_diff(Image : ImageCED : Sigma, Rho, Theta, Iterations : )

Herror coherence_enhancing_diff(const Hobject Image, Hobject* ImageCED, double Sigma, double Rho, double Theta, const Hlong Iterations)

Herror T_coherence_enhancing_diff(const Hobject Image, Hobject* ImageCED, const Htuple Sigma, const Htuple Rho, const Htuple Theta, const Htuple Iterations)

void CoherenceEnhancingDiff(const HObject& Image, HObject* ImageCED, const HTuple& Sigma, const HTuple& Rho, const HTuple& Theta, const HTuple& Iterations)

HImage HImage::CoherenceEnhancingDiff(double Sigma, double Rho, double Theta, Hlong Iterations) const

static void HOperatorSet.CoherenceEnhancingDiff(HObject image, out HObject imageCED, HTuple sigma, HTuple rho, HTuple theta, HTuple iterations)

HImage HImage.CoherenceEnhancingDiff(double sigma, double rho, double theta, int iterations)

def coherence_enhancing_diff(image: HObject, sigma: float, rho: float, theta: float, iterations: int) -> HObject

Description

The operator coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff performs an anisotropic diffusion process on the input image ImageImageImageImageimageimage to increase the coherence of the image structures contained in ImageImageImageImageimageimage. In particular, noncontinuous image edges are connected by diffusion, without being smoothed perpendicular to their dominating direction. For this, coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff uses the anisotropic diffusion equation formulated by Weickert. With a 2x2 coefficient matrix G that depends on the gray values in ImageImageImageImageimageimage, this is an enhancement of the mean curvature flow or intrinsic heat equation on the gray value function u defined by the input image ImageImageImageImageimageimage at a time . The smoothing operator mean_curvature_flowmean_curvature_flowMeanCurvatureFlowMeanCurvatureFlowMeanCurvatureFlowmean_curvature_flow is a direct application of the mean curvature flow equation. The discrete diffusion equation is solved in IterationsIterationsIterationsIterationsiterationsiterations time steps of length ThetaThetaThetaThetathetatheta, so that the output image ImageCEDImageCEDImageCEDImageCEDimageCEDimage_ced contains the gray value function at the time .

To detect the edge direction more robustly, in particular on noisy input data, an additional isotropic smoothing step can precede the computation of the gray value gradients. The parameter SigmaSigmaSigmaSigmasigmasigma determines the magnitude of the smoothing by means of the standard deviation of a corresponding Gaussian convolution kernel, as used in the operator isotropic_diffusionisotropic_diffusionIsotropicDiffusionIsotropicDiffusionIsotropicDiffusionisotropic_diffusion for isotropic image smoothing.

While the matrix G is given by in the case of the operator mean_curvature_flowmean_curvature_flowMeanCurvatureFlowMeanCurvatureFlowMeanCurvatureFlowmean_curvature_flow, where I denotes the unit matrix, is again smoothed componentwise by a Gaussian filter of standard deviation RhoRhoRhoRhorhorho for coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff. Then, the final coefficient matrix is constructed from the eigenvalues and eigenvectors of the resulting intermediate matrix, where the functions were determined empirically and taken from the publication of Weickert.

Hence, the diffusion direction in mean_curvature_flowmean_curvature_flowMeanCurvatureFlowMeanCurvatureFlowMeanCurvatureFlowmean_curvature_flow is only determined by the local direction of the gray value gradient, while considers the macroscopic structure of the image objects on the scale RhoRhoRhoRhorhorho and the magnitude of the diffusion in coherence_enhancing_diffcoherence_enhancing_diffCoherenceEnhancingDiffCoherenceEnhancingDiffCoherenceEnhancingDiffcoherence_enhancing_diff depends on how well this structure is defined.

Attention

Note that filter operators may return unexpected results if an image with a reduced domain is used as input. Please refer to the chapter Filters.

Execution Information

Parameters

ImageImageImageImageimageimage (input_object)  (multichannel-)image(-array) objectHImageHObjectHImageHobject (byte / uint2 / real)

Input image.

ImageCEDImageCEDImageCEDImageCEDimageCEDimage_ced (output_object)  image(-array) objectHImageHObjectHImageHobject * (byte / uint2 / real)

Output image.

SigmaSigmaSigmaSigmasigmasigma (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Smoothing for derivative operator.

Default value: 0.5

Suggested values: 0.0, 0.1, 0.5, 1.0

Restriction: Sigma >= 0

RhoRhoRhoRhorhorho (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Smoothing for diffusion coefficients.

Default value: 3.0

Suggested values: 0.0, 1.0, 3.0, 5.0, 10.0, 30.0

Restriction: Rho >= 0

ThetaThetaThetaThetathetatheta (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Time step.

Default value: 0.5

Suggested values: 0.1, 0.2, 0.3, 0.4, 0.5

Restriction: 0 < Theta <= 0.5

IterationsIterationsIterationsIterationsiterationsiterations (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of iterations.

Default value: 10

Suggested values: 1, 5, 10, 20, 50, 100, 500

Restriction: Iterations >= 1

References

J. Weickert, V. Hlavac, R. Sara; “Multiscale texture enhancement”; Computer analysis of images and patterns, Lecture Notes in Computer Science, Vol. 970, pp. 230-237; Springer, Berlin; 1995.
J. Weickert, B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever; “A review of nonlinear diffusion filtering”; Scale-Space Theory in Computer Vision, Lecture Notes in Comp. Science, Vol. 1252, pp. 3-28; Springer, Berlin; 1997.

Module

Foundation