generalized_eigenvalues_symmetric_matrixT_generalized_eigenvalues_symmetric_matrixGeneralizedEigenvaluesSymmetricMatrixGeneralizedEigenvaluesSymmetricMatrixgeneralized_eigenvalues_symmetric_matrix — Compute the generalized eigenvalues and optionally generalized
eigenvectors of symmetric input matrices.
The operator generalized_eigenvalues_symmetric_matrixgeneralized_eigenvalues_symmetric_matrixGeneralizedEigenvaluesSymmetricMatrixGeneralizedEigenvaluesSymmetricMatrixGeneralizedEigenvaluesSymmetricMatrixgeneralized_eigenvalues_symmetric_matrix
computes all generalized eigenvalues and, optionally, generalized
eigenvectors of the symmetric matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a and the
symmetric positive definite matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b. Both
matrices must have identical dimensions. The matrices are
defined by the matrix handles MatrixAIDMatrixAIDMatrixAIDMatrixAIDmatrixAIDmatrix_aid and
MatrixBIDMatrixBIDMatrixBIDMatrixBIDmatrixBIDmatrix_bid. On output, a new matrix EigenvaluesEigenvaluesEigenvaluesEigenvalueseigenvalueseigenvalues
with the generalized eigenvalues in ascending order and,
optionally, a new matrix
EigenvectorsEigenvectorsEigenvectorsEigenvectorseigenvectorseigenvectors with the generalized eigenvectors is
created. Each jth column of the matrix EigenvectorsEigenvectorsEigenvectorsEigenvectorseigenvectorseigenvectors
contains the related eigenvector to the jth eigenvalue. The
operator returns the matrix handles EigenvaluesIDEigenvaluesIDEigenvaluesIDEigenvaluesIDeigenvaluesIDeigenvalues_id and
EigenvectorsIDEigenvectorsIDEigenvectorsIDEigenvectorsIDeigenvectorsIDeigenvectors_id of the matrices EigenvaluesEigenvaluesEigenvaluesEigenvalueseigenvalueseigenvalues and
EigenvectorsEigenvectorsEigenvectorsEigenvectorseigenvectorseigenvectors. Access to the elements of the matrices is
possible, e.g., with the operator get_full_matrixget_full_matrixGetFullMatrixGetFullMatrixGetFullMatrixget_full_matrix or
get_sub_matrixget_sub_matrixGetSubMatrixGetSubMatrixGetSubMatrixget_sub_matrix.
The upper triangular parts of the input matrices MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a
and MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b must contain the relevant information of the
matrices. The strictly lower triangular parts of the matrices are
not referenced. If the referenced parts of the input matrices
MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a or MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b are not of the specified
type, an exception is raised.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
If the parameters are valid, the operator
generalized_eigenvalues_symmetric_matrixgeneralized_eigenvalues_symmetric_matrixGeneralizedEigenvaluesSymmetricMatrixGeneralizedEigenvaluesSymmetricMatrixGeneralizedEigenvaluesSymmetricMatrixgeneralized_eigenvalues_symmetric_matrix returns the value
2 (H_MSG_TRUE). If necessary, an exception is raised.
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.