match_fundamental_matrix_ransac T_match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac (Operator)
Name
match_fundamental_matrix_ransac T_match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac
— Compute the fundamental matrix for a pair of stereo images by
automatically finding correspondences between image
points.
Signature
match_fundamental_matrix_ransac (Image1 , Image2 : : Rows1 , Cols1 , Rows2 , Cols2 , GrayMatchMethod , MaskSize , RowMove , ColMove , RowTolerance , ColTolerance , Rotation , MatchThreshold , EstimationMethod , DistanceThreshold , RandSeed : FMatrix , CovFMat , Error , Points1 , Points2 )
Herror T_match_fundamental_matrix_ransac (const Hobject Image1 , const Hobject Image2 , const Htuple Rows1 , const Htuple Cols1 , const Htuple Rows2 , const Htuple Cols2 , const Htuple GrayMatchMethod , const Htuple MaskSize , const Htuple RowMove , const Htuple ColMove , const Htuple RowTolerance , const Htuple ColTolerance , const Htuple Rotation , const Htuple MatchThreshold , const Htuple EstimationMethod , const Htuple DistanceThreshold , const Htuple RandSeed , Htuple* FMatrix , Htuple* CovFMat , Htuple* Error , Htuple* Points1 , Htuple* Points2 )
void MatchFundamentalMatrixRansac (const HObject& Image1 , const HObject& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HTuple& GrayMatchMethod , const HTuple& MaskSize , const HTuple& RowMove , const HTuple& ColMove , const HTuple& RowTolerance , const HTuple& ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HTuple& EstimationMethod , const HTuple& DistanceThreshold , const HTuple& RandSeed , HTuple* FMatrix , HTuple* CovFMat , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HHomMat2D HImage ::MatchFundamentalMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* CovFMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovFMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovFMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovFMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(Windows only)
HTuple HHomMat2D ::MatchFundamentalMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HHomMat2D ::MatchFundamentalMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HHomMat2D ::MatchFundamentalMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HHomMat2D ::MatchFundamentalMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
(Windows only)
static void HOperatorSet .MatchFundamentalMatrixRansac (HObject image1 , HObject image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HTuple grayMatchMethod , HTuple maskSize , HTuple rowMove , HTuple colMove , HTuple rowTolerance , HTuple colTolerance , HTuple rotation , HTuple matchThreshold , HTuple estimationMethod , HTuple distanceThreshold , HTuple randSeed , out HTuple FMatrix , out HTuple covFMat , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchFundamentalMatrixRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple covFMat , out double error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchFundamentalMatrixRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out HTuple covFMat , out double error , out HTuple points1 , out HTuple points2 )
HTuple HHomMat2D .MatchFundamentalMatrixRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
HTuple HHomMat2D .MatchFundamentalMatrixRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
def match_fundamental_matrix_ransac (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[float], Sequence[float], float, Sequence[int], Sequence[int]]
Description
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1 rows_1
,Cols1 Cols1 Cols1 Cols1 cols1 cols_1
) and
(Rows2 Rows2 Rows2 Rows2 rows2 rows_2
,Cols2 Cols2 Cols2 Cols2 cols2 cols_2
) in the stereo images
Image1 Image1 Image1 Image1 image1 image_1
and Image2 Image2 Image2 Image2 image2 image_2
,
match_fundamental_matrix_ransac match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac
automatically finds the
correspondences between the characteristic points and determines the
geometry of the stereo setup. For unknown cameras the geometry of the
stereo setup is represented by the fundamental matrix FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
and all corresponding points have to fulfill the epipolar
constraint, namely:
Note the column/row ordering in the point coordinates: because the
fundamental matrix encodes the projective relation between two
stereo images embedded in 3D space, the x/y notation has to be
compliant with the camera coordinate system. So, (x,y) coordinates
correspond to (column,row) pairs.
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
or
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
.
The matching itself is carried out in two steps: first, gray value
correlations of mask windows around the input points in the first
and the second image are determined and an initial matching between
them is generated using the similarity of the windows in both images.
Then, the RANSAC algorithm is applied to find the fundamental matrix
that maximizes the number of correspondences under the epipolar constraint.
The size of the mask windows is MaskSize MaskSize MaskSize MaskSize maskSize mask_size
x MaskSize MaskSize MaskSize MaskSize maskSize mask_size
. Three
metrics for the correlation can be selected. If
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
has the value 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , the sum of
the squared gray value differences is used, 'sad' "sad" "sad" "sad" "sad" "sad" means the
sum of absolute differences, and 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" is the normalized
cross correlation. For details please refer to
binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity binocular_disparity
. The metric is minimized ('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" ,
'sad' "sad" "sad" "sad" "sad" "sad" ) or maximized ('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ) over all possible
point pairs. A thus found matching is only accepted if the value of
the metric is below the value of MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" "sad" ) or above that value
('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ).
To increase the speed of the algorithm the search area for the
matching operations can be limited. Only points within a window of
points are considered. The offset of the
center of the search window in the second image with respect to the
position of the current point in the first image is given by
RowMove RowMove RowMove RowMove rowMove row_move
and ColMove ColMove ColMove ColMove colMove col_move
.
If the second camera is
rotated around the optical axis with respect to the first camera
the parameter Rotation Rotation Rotation Rotation rotation rotation
may contain an estimate for the
rotation angle or an angle interval in radians. A good guess will
increase the quality of the gray value matching. If the actual
rotation differs too much from the specified estimate the matching
will typically fail. In this case, an angle interval should be
specified and Rotation Rotation Rotation Rotation rotation rotation
is a tuple with two elements. The
larger the given interval the slower the operator is since the
RANSAC algorithm is run over all angle increments within the
interval.
After the initial matching is completed a randomized search algorithm
(RANSAC) is used to determine the fundamental matrix
FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
. It tries to find the matrix that is consistent
with a maximum number of correspondences.
For a point to be accepted, the distance to its corresponding epipolar line
must not exceed the threshold DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
.
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
decides whether the relative
orientation between the cameras is of a special type and which algorithm is
to be applied for its computation.
If EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
is either 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" the relative orientation is arbitrary.
If left and right camera are identical and the relative orientation between
them is a pure translation then choose EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
equal to
'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" .
The typical application for this special motion case is the
scenario of a single fixed camera looking onto a moving conveyor belt.
In order to get a unique solution in the correspondence problem the minimum
required number of corresponding points is eight in the general case and
three in the special, translational case.
The fundamental matrix is computed by a linear algorithm if
'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" is chosen.
With 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard"
the algorithm gives a statistically optimal result, and returns as well the
covariance of the fundamental matrix CovFMat CovFMat CovFMat CovFMat covFMat cov_fmat
.
Here, 'normalized_dlt' and 'gold_standard' stand for
direct-linear-transformation and gold-standard-algorithm respectively.
The value Error Error Error Error error error
indicates the overall quality of the estimation
procedure and is the mean Euclidian distance in pixels between the
points and their corresponding epipolar lines.
Point pairs consistent with the mentioned constraints are considered to be
in correspondences. Points1 Points1 Points1 Points1 points1 points_1
contains the indices of the
matched input points from the first image and Points2 Points2 Points2 Points2 points2 points_2
contains
the indices of the corresponding points in the second image.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
is set to a positive
number the operator yields the same result on every call with the
same parameters because the internally used random number generator
is initialized with the RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
=
0 the random number generator is initialized with the
current time. In this case the results may not be reproducible.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
Image1 Image1 Image1 Image1 image1 image_1
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 1.
Image2 Image2 Image2 Image2 image2 image_2
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 2.
Rows1 Rows1 Rows1 Rows1 rows1 rows_1
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 1.
Restriction: length(Rows1) >= 8 || length(Rows1) >= 3
Cols1 Cols1 Cols1 Cols1 cols1 cols_1
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 1.
Restriction: length(Cols1) == length(Rows1)
Rows2 Rows2 Rows2 Rows2 rows2 rows_2
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 2.
Restriction: length(Rows2) >= 8 || length(Rows2) >= 3
Cols2 Cols2 Cols2 Cols2 cols2 cols_2
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 2.
Restriction: length(Cols2) == length(Rows2)
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Gray value comparison metric.
Default value:
'ssd'
"ssd"
"ssd"
"ssd"
"ssd"
"ssd"
List of values: 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd"
MaskSize MaskSize MaskSize MaskSize maskSize mask_size
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Size of gray value masks.
Default value: 10
Typical range of values: 3
≤
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
mask_size
≤
15
Restriction: MaskSize >= 1
RowMove RowMove RowMove RowMove rowMove row_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average row coordinate shift of corresponding points.
Default value: 0
Typical range of values: 0
≤
RowMove
RowMove
RowMove
RowMove
rowMove
row_move
≤
200
ColMove ColMove ColMove ColMove colMove col_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average column coordinate shift of
corresponding points.
Default value: 0
Typical range of values: 0
≤
ColMove
ColMove
ColMove
ColMove
colMove
col_move
≤
200
RowTolerance RowTolerance RowTolerance RowTolerance rowTolerance row_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half height of matching search window.
Default value: 200
Typical range of values: 50
≤
RowTolerance
RowTolerance
RowTolerance
RowTolerance
rowTolerance
row_tolerance
≤
200
Restriction: RowTolerance >= 1
ColTolerance ColTolerance ColTolerance ColTolerance colTolerance col_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half width of matching search window.
Default value: 200
Typical range of values: 50
≤
ColTolerance
ColTolerance
ColTolerance
ColTolerance
colTolerance
col_tolerance
≤
200
Restriction: ColTolerance >= 1
Rotation Rotation Rotation Rotation rotation rotation
(input_control) angle.rad(-array) →
HTuple MaybeSequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Estimate of the relative orientation of the right image
with respect to the left image.
Default value: 0.0
Suggested values: 0.0, 0.1, -0.1, 0.7854, 1.571, 3.142
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
(input_control) number →
HTuple Union[int, float] HTuple Htuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Threshold for gray value matching.
Default value: 10
Suggested values: 10, 20, 50, 100, 0.9, 0.7
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Algorithm for the computation of the
fundamental matrix and for special camera orientations.
Default value:
'normalized_dlt'
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
List of values: 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" , 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" , 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt"
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
(input_control) number →
HTuple Union[float, int] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Maximal deviation of a point from its epipolar line.
Default value: 1
Typical range of values: 0.5
≤
DistanceThreshold
DistanceThreshold
DistanceThreshold
DistanceThreshold
distanceThreshold
distance_threshold
≤
5
Restriction: DistanceThreshold > 0
RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Seed for the random number generator.
Default value: 0
FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
(output_control) hom_mat2d →
HHomMat2D , HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Computed fundamental matrix.
CovFMat CovFMat CovFMat CovFMat covFMat cov_fmat
(output_control) real-array →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
9x9 covariance matrix of the
fundamental matrix.
Error Error Error Error error error
(output_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Root-Mean-Square of the epipolar distance error.
Points1 Points1 Points1 Points1 points1 points_1
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 1.
Points2 Points2 Points2 Points2 points2 points_2
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 2.
Possible Predecessors
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
,
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
Possible Successors
vector_to_fundamental_matrix vector_to_fundamental_matrix VectorToFundamentalMatrix VectorToFundamentalMatrix VectorToFundamentalMatrix vector_to_fundamental_matrix
,
gen_binocular_proj_rectification gen_binocular_proj_rectification GenBinocularProjRectification GenBinocularProjRectification GenBinocularProjRectification gen_binocular_proj_rectification
See also
match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac
,
match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
,
proj_match_points_ransac proj_match_points_ransac ProjMatchPointsRansac ProjMatchPointsRansac ProjMatchPointsRansac proj_match_points_ransac
References
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
Module
3D Metrology