trainf_ocr_class_svm_protectedT_trainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected (Operator)

Name

trainf_ocr_class_svm_protectedT_trainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected — Train an OCR classifier with data from a (protected) training file.

Signature

trainf_ocr_class_svm_protected( : : OCRHandle, TrainingFile, Password, Epsilon, TrainMode : )

Herror T_trainf_ocr_class_svm_protected(const Htuple OCRHandle, const Htuple TrainingFile, const Htuple Password, const Htuple Epsilon, const Htuple TrainMode)

void TrainfOcrClassSvmProtected(const HTuple& OCRHandle, const HTuple& TrainingFile, const HTuple& Password, const HTuple& Epsilon, const HTuple& TrainMode)

void HOCRSvm::TrainfOcrClassSvmProtected(const HTuple& TrainingFile, const HTuple& Password, double Epsilon, const HTuple& TrainMode) const

void HOCRSvm::TrainfOcrClassSvmProtected(const HString& TrainingFile, const HString& Password, double Epsilon, const HString& TrainMode) const

void HOCRSvm::TrainfOcrClassSvmProtected(const char* TrainingFile, const char* Password, double Epsilon, const char* TrainMode) const

void HOCRSvm::TrainfOcrClassSvmProtected(const wchar_t* TrainingFile, const wchar_t* Password, double Epsilon, const wchar_t* TrainMode) const   (Windows only)

static void HOperatorSet.TrainfOcrClassSvmProtected(HTuple OCRHandle, HTuple trainingFile, HTuple password, HTuple epsilon, HTuple trainMode)

void HOCRSvm.TrainfOcrClassSvmProtected(HTuple trainingFile, HTuple password, double epsilon, HTuple trainMode)

void HOCRSvm.TrainfOcrClassSvmProtected(string trainingFile, string password, double epsilon, string trainMode)

def trainf_ocr_class_svm_protected(ocrhandle: HHandle, training_file: MaybeSequence[str], password: MaybeSequence[str], epsilon: float, train_mode: Union[str, int]) -> None

Description

trainf_ocr_class_svm_protectedtrainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected trains the OCR classifier OCRHandleOCRHandleOCRHandleOCRHandleOCRHandleocrhandle with the training data stored in the OCR training files given by TrainingFileTrainingFileTrainingFileTrainingFiletrainingFiletraining_file. Its functionality corresponds to the functionality of trainf_ocr_class_svmtrainf_ocr_class_svmTrainfOcrClassSvmTrainfOcrClassSvmTrainfOcrClassSvmtrainf_ocr_class_svm, with the addition that trainf_ocr_class_svm_protectedtrainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected can process unprotected and protected training files. Protected training files can be used only with the correct user password PasswordPasswordPasswordPasswordpasswordpassword. If the number of passwords PasswordPasswordPasswordPasswordpasswordpassword equals 1, then every input file TrainingFileTrainingFileTrainingFileTrainingFiletrainingFiletraining_file is checked with that password, otherwise the number of passwords has to be equal to the number of input files and the input file at position n is checked with the password at position n. For unprotected training files the passwords are ignored.

For a more detailed description of the operator's functionality see trainf_ocr_class_svmtrainf_ocr_class_svmTrainfOcrClassSvmTrainfOcrClassSvmTrainfOcrClassSvmtrainf_ocr_class_svm. The concept of protecting OCR training data in HALCON is described in protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainfprotect_ocr_trainf.

Execution Information

This operator modifies the state of the following input parameter:

During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.

Parameters

OCRHandleOCRHandleOCRHandleOCRHandleOCRHandleocrhandle (input_control, state is modified)  ocr_svm HOCRSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the OCR classifier.

TrainingFileTrainingFileTrainingFileTrainingFiletrainingFiletraining_file (input_control)  filename.read(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Names of the training files.

Default value: 'ocr.trf' "ocr.trf" "ocr.trf" "ocr.trf" "ocr.trf" "ocr.trf"

File extension: .trf, .otr

PasswordPasswordPasswordPasswordpasswordpassword (input_control)  string(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Passwords for protected training files.

EpsilonEpsilonEpsilonEpsilonepsilonepsilon (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Stop parameter for training.

Default value: 0.001

Suggested values: 0.00001, 0.0001, 0.001, 0.01, 0.1

TrainModeTrainModeTrainModeTrainModetrainModetrain_mode (input_control)  number HTupleUnion[str, int]HTupleHtuple (string / integer) (string / int / long) (HString / Hlong) (char* / Hlong)

Mode of training.

Default value: 'default' "default" "default" "default" "default" "default"

List of values: 'add_sv_to_train_set'"add_sv_to_train_set""add_sv_to_train_set""add_sv_to_train_set""add_sv_to_train_set""add_sv_to_train_set", 'default'"default""default""default""default""default"

Result

If the parameters are valid the operator trainf_ocr_class_svm_protectedtrainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.

trainf_ocr_class_svm_protectedtrainf_ocr_class_svm_protectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedTrainfOcrClassSvmProtectedtrainf_ocr_class_svm_protected may return the error 9211 (Matrix is not positive definite) if Preprocessing = 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates that not enough training samples have been stored for each class. In this case we recommend to change Preprocessing to 'normalization'"normalization""normalization""normalization""normalization""normalization". Another solution can be to add more training samples.

Possible Predecessors

create_ocr_class_svmcreate_ocr_class_svmCreateOcrClassSvmCreateOcrClassSvmCreateOcrClassSvmcreate_ocr_class_svm, write_ocr_trainfwrite_ocr_trainfWriteOcrTrainfWriteOcrTrainfWriteOcrTrainfwrite_ocr_trainf, append_ocr_trainfappend_ocr_trainfAppendOcrTrainfAppendOcrTrainfAppendOcrTrainfappend_ocr_trainf, write_ocr_trainf_imagewrite_ocr_trainf_imageWriteOcrTrainfImageWriteOcrTrainfImageWriteOcrTrainfImagewrite_ocr_trainf_image, protect_ocr_trainfprotect_ocr_trainfProtectOcrTrainfProtectOcrTrainfProtectOcrTrainfprotect_ocr_trainf

Possible Successors

do_ocr_single_class_svmdo_ocr_single_class_svmDoOcrSingleClassSvmDoOcrSingleClassSvmDoOcrSingleClassSvmdo_ocr_single_class_svm, do_ocr_multi_class_svmdo_ocr_multi_class_svmDoOcrMultiClassSvmDoOcrMultiClassSvmDoOcrMultiClassSvmdo_ocr_multi_class_svm, write_ocr_class_svmwrite_ocr_class_svmWriteOcrClassSvmWriteOcrClassSvmWriteOcrClassSvmwrite_ocr_class_svm

Alternatives

read_ocr_class_svmread_ocr_class_svmReadOcrClassSvmReadOcrClassSvmReadOcrClassSvmread_ocr_class_svm

See also

trainf_ocr_class_svmtrainf_ocr_class_svmTrainfOcrClassSvmTrainfOcrClassSvmTrainfOcrClassSvmtrainf_ocr_class_svm, train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm

Module

OCR/OCV