hom_mat2d_to_affine_parT_hom_mat2d_to_affine_parHomMat2dToAffineParHomMat2dToAffineParhom_mat2d_to_affine_par — Compute the affine transformation parameters from a homogeneous 2D
transformation matrix.
hom_mat2d_to_affine_parhom_mat2d_to_affine_parHomMat2dToAffineParHomMat2dToAffineParHomMat2dToAffineParhom_mat2d_to_affine_par computes the affine transformation parameters
corresponding to the homogeneous 2D transformation matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d.
The parameters SxSxSxSxsxsx and SySySySysysy determine how the transformation
scales the original x- and y-axes, respectively. The two scaling factors are
always positive. The angle ThetaThetaThetaThetathetatheta describes whether the transformed
coordinate axes are orthogonal (ThetaThetaThetaThetathetatheta = 0) or slanted. If
, the transformation
contains a reflection. The angle PhiPhiPhiPhiphiphi determines the rotation of the
transformed x-axis with respect to the original x-axis. The parameters
TxTxTxTxtxtx and TyTyTyTytyty determine the translation of the two coordinate
systems. The matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d can be constructed from the six
transformation parameters by the following operator sequence:
If the matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d is non-degenerate and represents an
affine transformation (i.e., not a projective transformation),
hom_mat2d_to_affine_parhom_mat2d_to_affine_parHomMat2dToAffineParHomMat2dToAffineParHomMat2dToAffineParhom_mat2d_to_affine_par returns TRUE. Otherwise, an
exception is raised.