The matrices MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a
and MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b will not be transposed. Therefore, the formula
for the calculation of the result is:
The number of columns of the matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a must be
identical to the number of rows of the matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b.
Example:
'ATB'"ATB""ATB""ATB""ATB""ATB":
The matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a
will be transposed. The matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b will not be
transposed. Therefore, the formula for the calculation of the
result is:
The number of rows of the matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a must be
identical to the number of rows of the matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b.
Example:
'ABT'"ABT""ABT""ABT""ABT""ABT":
The matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a
will not be transposed. The matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b will be
transposed. Therefore, the formula for the calculation of the
result is:
The number of columns of the matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a must be
identical to the number of columns of the matrix
MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b.
Example:
'ATBT'"ATBT""ATBT""ATBT""ATBT""ATBT":
The matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a
and the matrix MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b will be transposed. Therefore,
the formula for the calculation of the result is:
The number of rows of the matrix MatrixAMatrixAMatrixAMatrixAmatrixAmatrix_a must be
identical to the number of columns of the matrix
MatrixBMatrixBMatrixBMatrixBmatrixBmatrix_b.
Example:
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
If the parameters are valid, the operator mult_matrixmult_matrixMultMatrixMultMatrixMultMatrixmult_matrix
returns the value TRUE. If necessary, an exception is raised.
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.