select_feature_set_trainf_mlpT_select_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp (Operator)

Name

select_feature_set_trainf_mlpT_select_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp — Selects an optimal combination of features to classify OCR data.

Signature

select_feature_set_trainf_mlp( : : TrainingFile, FeatureList, SelectionMethod, Width, Height, GenParamName, GenParamValue : OCRHandle, FeatureSet, Score)

Herror T_select_feature_set_trainf_mlp(const Htuple TrainingFile, const Htuple FeatureList, const Htuple SelectionMethod, const Htuple Width, const Htuple Height, const Htuple GenParamName, const Htuple GenParamValue, Htuple* OCRHandle, Htuple* FeatureSet, Htuple* Score)

void SelectFeatureSetTrainfMlp(const HTuple& TrainingFile, const HTuple& FeatureList, const HTuple& SelectionMethod, const HTuple& Width, const HTuple& Height, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* OCRHandle, HTuple* FeatureSet, HTuple* Score)

HTuple HOCRMlp::SelectFeatureSetTrainfMlp(const HTuple& TrainingFile, const HTuple& FeatureList, const HString& SelectionMethod, Hlong Width, Hlong Height, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score)

HTuple HOCRMlp::SelectFeatureSetTrainfMlp(const HString& TrainingFile, const HString& FeatureList, const HString& SelectionMethod, Hlong Width, Hlong Height, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score)

HTuple HOCRMlp::SelectFeatureSetTrainfMlp(const char* TrainingFile, const char* FeatureList, const char* SelectionMethod, Hlong Width, Hlong Height, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score)

HTuple HOCRMlp::SelectFeatureSetTrainfMlp(const wchar_t* TrainingFile, const wchar_t* FeatureList, const wchar_t* SelectionMethod, Hlong Width, Hlong Height, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score)   (Windows only)

static void HOperatorSet.SelectFeatureSetTrainfMlp(HTuple trainingFile, HTuple featureList, HTuple selectionMethod, HTuple width, HTuple height, HTuple genParamName, HTuple genParamValue, out HTuple OCRHandle, out HTuple featureSet, out HTuple score)

HTuple HOCRMlp.SelectFeatureSetTrainfMlp(HTuple trainingFile, HTuple featureList, string selectionMethod, int width, int height, HTuple genParamName, HTuple genParamValue, out HTuple score)

HTuple HOCRMlp.SelectFeatureSetTrainfMlp(string trainingFile, string featureList, string selectionMethod, int width, int height, HTuple genParamName, HTuple genParamValue, out HTuple score)

def select_feature_set_trainf_mlp(training_file: MaybeSequence[str], feature_list: MaybeSequence[str], selection_method: str, width: int, height: int, gen_param_name: Sequence[str], gen_param_value: Sequence[Union[int, str, float]]) -> Tuple[HHandle, Sequence[str], Sequence[float]]

Description

select_feature_set_trainf_mlpselect_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp selects an optimal combination of features, to classify the OCR data given in the training file TrainingFileTrainingFileTrainingFileTrainingFiletrainingFiletraining_file with a multilayer perceptron, for details see create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp.

Possible features are all OCR features listed and explained in create_ocr_class_mlpcreate_ocr_class_mlpCreateOcrClassMlpCreateOcrClassMlpCreateOcrClassMlpcreate_ocr_class_mlp. All candidates which should be tested can be specified in FeatureListFeatureListFeatureListFeatureListfeatureListfeature_list. A subset of these features is returned as selected features in FeatureSetFeatureSetFeatureSetFeatureSetfeatureSetfeature_set.

select_feature_set_trainf_mlpselect_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp is specialized on OCR problems and only supports the features in the list mentioned before. In order to use other features, please use the more general operator select_feature_set_mlpselect_feature_set_mlpSelectFeatureSetMlpSelectFeatureSetMlpSelectFeatureSetMlpselect_feature_set_mlp.

The selection method SelectionMethodSelectionMethodSelectionMethodSelectionMethodselectionMethodselection_method is either a greedy search 'greedy'"greedy""greedy""greedy""greedy""greedy" (iteratively add the feature with highest gain) or the dynamically oscillating search 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating" (add the feature with highest gain and test then if any of the already added features can be left out without great loss). The method 'greedy'"greedy""greedy""greedy""greedy""greedy" is generally preferable, since it is faster. Only in cases when a large training set is available the method 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating" might return better results.

The optimization criterion is the classification rate of a two-fold cross-validation of the training data. The best achieved value is returned in ScoreScoreScoreScorescorescore.

The parameters GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value allow to adapt the setting of the number of hidden neurons in the MLP with 'num_hidden'"num_hidden""num_hidden""num_hidden""num_hidden""num_hidden". The default value is 80, a higher value leads to longer training times but might lead to a more expressive classifier.

Attention

This operator may take considerable time, depending on the size of the data set in the training file, and the number of features.

Please note, that this operator should not be called, if only a small set of training data is available. Due to the risk of overfitting the operator select_feature_set_trainf_mlpselect_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp may deliver a classifier with a very high score. However, the classifier may perform poorly when tested.

Execution Information

This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.

Parameters

TrainingFileTrainingFileTrainingFileTrainingFiletrainingFiletraining_file (input_control)  filename.read(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Names of the training files.

Default value: '' "" "" "" "" ""

File extension: .trf, .otr

FeatureListFeatureListFeatureListFeatureListfeatureListfeature_list (input_control)  string(-array) HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)

List of features that should be considered for selection.

Default value: ['zoom_factor','ratio','width','height','foreground','foreground_grid_9','foreground_grid_16','anisometry','compactness','convexity','moments_region_2nd_invar','moments_region_2nd_rel_invar','moments_region_3rd_invar','moments_central','phi','num_connect','num_holes','projection_horizontal','projection_vertical','projection_horizontal_invar','projection_vertical_invar','chord_histo','num_runs','pixel','pixel_invar','pixel_binary','gradient_8dir','cooc','moments_gray_plane'] ["zoom_factor","ratio","width","height","foreground","foreground_grid_9","foreground_grid_16","anisometry","compactness","convexity","moments_region_2nd_invar","moments_region_2nd_rel_invar","moments_region_3rd_invar","moments_central","phi","num_connect","num_holes","projection_horizontal","projection_vertical","projection_horizontal_invar","projection_vertical_invar","chord_histo","num_runs","pixel","pixel_invar","pixel_binary","gradient_8dir","cooc","moments_gray_plane"] ["zoom_factor","ratio","width","height","foreground","foreground_grid_9","foreground_grid_16","anisometry","compactness","convexity","moments_region_2nd_invar","moments_region_2nd_rel_invar","moments_region_3rd_invar","moments_central","phi","num_connect","num_holes","projection_horizontal","projection_vertical","projection_horizontal_invar","projection_vertical_invar","chord_histo","num_runs","pixel","pixel_invar","pixel_binary","gradient_8dir","cooc","moments_gray_plane"] ["zoom_factor","ratio","width","height","foreground","foreground_grid_9","foreground_grid_16","anisometry","compactness","convexity","moments_region_2nd_invar","moments_region_2nd_rel_invar","moments_region_3rd_invar","moments_central","phi","num_connect","num_holes","projection_horizontal","projection_vertical","projection_horizontal_invar","projection_vertical_invar","chord_histo","num_runs","pixel","pixel_invar","pixel_binary","gradient_8dir","cooc","moments_gray_plane"] ["zoom_factor","ratio","width","height","foreground","foreground_grid_9","foreground_grid_16","anisometry","compactness","convexity","moments_region_2nd_invar","moments_region_2nd_rel_invar","moments_region_3rd_invar","moments_central","phi","num_connect","num_holes","projection_horizontal","projection_vertical","projection_horizontal_invar","projection_vertical_invar","chord_histo","num_runs","pixel","pixel_invar","pixel_binary","gradient_8dir","cooc","moments_gray_plane"] ["zoom_factor","ratio","width","height","foreground","foreground_grid_9","foreground_grid_16","anisometry","compactness","convexity","moments_region_2nd_invar","moments_region_2nd_rel_invar","moments_region_3rd_invar","moments_central","phi","num_connect","num_holes","projection_horizontal","projection_vertical","projection_horizontal_invar","projection_vertical_invar","chord_histo","num_runs","pixel","pixel_invar","pixel_binary","gradient_8dir","cooc","moments_gray_plane"]

List of values: 'anisometry'"anisometry""anisometry""anisometry""anisometry""anisometry", 'chord_histo'"chord_histo""chord_histo""chord_histo""chord_histo""chord_histo", 'compactness'"compactness""compactness""compactness""compactness""compactness", 'convexity'"convexity""convexity""convexity""convexity""convexity", 'cooc'"cooc""cooc""cooc""cooc""cooc", 'default'"default""default""default""default""default", 'foreground'"foreground""foreground""foreground""foreground""foreground", 'foreground_grid_16'"foreground_grid_16""foreground_grid_16""foreground_grid_16""foreground_grid_16""foreground_grid_16", 'foreground_grid_9'"foreground_grid_9""foreground_grid_9""foreground_grid_9""foreground_grid_9""foreground_grid_9", 'gradient_8dir'"gradient_8dir""gradient_8dir""gradient_8dir""gradient_8dir""gradient_8dir", 'height'"height""height""height""height""height", 'moments_central'"moments_central""moments_central""moments_central""moments_central""moments_central", 'moments_gray_plane'"moments_gray_plane""moments_gray_plane""moments_gray_plane""moments_gray_plane""moments_gray_plane", 'moments_region_2nd_invar'"moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar""moments_region_2nd_invar", 'moments_region_2nd_rel_invar'"moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar""moments_region_2nd_rel_invar", 'moments_region_3rd_invar'"moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar""moments_region_3rd_invar", 'num_connect'"num_connect""num_connect""num_connect""num_connect""num_connect", 'num_holes'"num_holes""num_holes""num_holes""num_holes""num_holes", 'num_runs'"num_runs""num_runs""num_runs""num_runs""num_runs", 'phi'"phi""phi""phi""phi""phi", 'pixel'"pixel""pixel""pixel""pixel""pixel", 'pixel_binary'"pixel_binary""pixel_binary""pixel_binary""pixel_binary""pixel_binary", 'pixel_invar'"pixel_invar""pixel_invar""pixel_invar""pixel_invar""pixel_invar", 'projection_horizontal'"projection_horizontal""projection_horizontal""projection_horizontal""projection_horizontal""projection_horizontal", 'projection_horizontal_invar'"projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar""projection_horizontal_invar", 'projection_vertical'"projection_vertical""projection_vertical""projection_vertical""projection_vertical""projection_vertical", 'projection_vertical_invar'"projection_vertical_invar""projection_vertical_invar""projection_vertical_invar""projection_vertical_invar""projection_vertical_invar", 'ratio'"ratio""ratio""ratio""ratio""ratio", 'width'"width""width""width""width""width", 'zoom_factor'"zoom_factor""zoom_factor""zoom_factor""zoom_factor""zoom_factor"

SelectionMethodSelectionMethodSelectionMethodSelectionMethodselectionMethodselection_method (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Method to perform the selection.

Default value: 'greedy' "greedy" "greedy" "greedy" "greedy" "greedy"

List of values: 'greedy'"greedy""greedy""greedy""greedy""greedy", 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating"

WidthWidthWidthWidthwidthwidth (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Width of the rectangle to which the gray values of the segmented character are zoomed.

Default value: 15

HeightHeightHeightHeightheightheight (input_control)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Height of the rectangle to which the gray values of the segmented character are zoomed.

Default value: 16

GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (input_control)  string-array HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Names of generic parameters to configure the selection process and the classifier.

Default value: []

List of values: 'nu'"nu""nu""nu""nu""nu"

GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (input_control)  number-array HTupleSequence[Union[int, str, float]]HTupleHtuple (real / integer / string) (double / int / long / string) (double / Hlong / HString) (double / Hlong / char*)

Values of generic parameters to configure the selection process and the classifier.

Default value: []

Suggested values: '0.1'"0.1""0.1""0.1""0.1""0.1"

OCRHandleOCRHandleOCRHandleOCRHandleOCRHandleocrhandle (output_control)  ocr_mlp HOCRMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Trained OCR-MLP classifier.

FeatureSetFeatureSetFeatureSetFeatureSetfeatureSetfeature_set (output_control)  string-array HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Selected feature set, contains only entries from FeatureListFeatureListFeatureListFeatureListfeatureListfeature_list.

ScoreScoreScoreScorescorescore (output_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Achieved score using tow-fold cross-validation.

Result

If the parameters are valid, the operator select_feature_set_trainf_mlpselect_feature_set_trainf_mlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpSelectFeatureSetTrainfMlpselect_feature_set_trainf_mlp returns the value TRUE. If necessary, an exception is raised.

Alternatives

select_feature_set_trainf_svmselect_feature_set_trainf_svmSelectFeatureSetTrainfSvmSelectFeatureSetTrainfSvmSelectFeatureSetTrainfSvmselect_feature_set_trainf_svm, select_feature_set_trainf_knnselect_feature_set_trainf_knnSelectFeatureSetTrainfKnnSelectFeatureSetTrainfKnnSelectFeatureSetTrainfKnnselect_feature_set_trainf_knn

See also

select_feature_set_trainf_mlp_protectedselect_feature_set_trainf_mlp_protectedSelectFeatureSetTrainfMlpProtectedSelectFeatureSetTrainfMlpProtectedSelectFeatureSetTrainfMlpProtectedselect_feature_set_trainf_mlp_protected, select_feature_set_mlpselect_feature_set_mlpSelectFeatureSetMlpSelectFeatureSetMlpSelectFeatureSetMlpselect_feature_set_mlp

Module

OCR/OCV