set_regularization_params_ocr_class_mlp
— Set the regularization parameters of an OCR classifier.
set_regularization_params_ocr_class_mlp( : : OCRHandle, GenParamName, GenParamValue : )
set_regularization_params_ocr_class_mlp
sets the
regularization parameters of the OCR classifier passed in
OCRHandle
. The regularization parameter to be set is
specified with GenParamName
. Its value is specified with
GenParamValue
.
As described at create_class_mlp
, it may be desirable to
regularize the OCR classifier (i.e., the MLP of the OCR classifier)
to enforce a smoother transition of the confidences between the
different classes and to prevent overfitting of the OCR classifier
to the training data. To achieve this, a penalty for large MLP
weights (which are the main reason for very sharp transitions
between classes) can be added to the training of the OCR classifier
in trainf_ocr_class_mlp
by setting GenParamName
to
'weight_prior' and setting GenParamValue
to a
value > 0. Furthermore, the regularization parameters can be
determined automatically. For details, see
set_regularization_params_class_mlp
. If the regularization
parameters should be determined automatically, please carefully note
the advice in set_regularization_params_class_mlp
on how to
select the parameters NumHidden
of the MLP and
'num_outer_iterations' and on the memory and runtime
implications of automatically determining the regularization
parameters on the runtime of the training of the OCR classifier.
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
OCRHandle
(input_control, state is modified) ocr_mlp →
(handle)
Handle of the OCR classifier.
GenParamName
(input_control) string →
(string)
Name of the regularization parameter to return.
Default value: 'weight_prior'
List of values: 'num_inner_iterations' , 'num_outer_iterations' , 'weight_prior'
GenParamValue
(input_control) number(-array) →
(real / integer)
Value of the regularization parameter.
Default value: 1.0
Suggested values: 0.01, 0.1, 1.0, 10.0, 100.0, 0, 1, 2, 3, 5, 10, 15, 20
* This example shows how to determine the regularization parameters * automatically without examining the convergence of the * regularization parameters. * Create the OCR classifier. read_ocr_trainf_names ('ocr.trf', CharacterNames, CharacterCount) create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, \ 40, 'none', |CharacterNames|, 42, OCRHandle) * Set up the automatic determination of the regularization * parameters. set_regularization_params_ocr_class_mlp (OCRHandle, 'weight_prior', \ [0.01,0.01,0.01,0.01]) set_regularization_params_ocr_class_mlp (OCRHandle, \ 'num_outer_iterations', 10) * Train the classifier. trainf_ocr_class_mlp (OCRHandle, 'ocr.trf', 100, 1, 0.01, Error, \ ErrorLog) * Read out the estimate of the number of well-determined * parameters. get_regularization_params_ocr_class_mlp (OCRHandle, \ 'fraction_well_determined_params', \ FractionParams) * If FractionParams differs substantially from 1, consider reducing * NumHidden appropriately and consider performing a preprocessing that * reduces the number of input variables to the net, i.e., canonical * variates or principal components. write_ocr_class_mlp (OCRHandle, 'ocr.omc') * This example shows how to determine the regularization parameters * automatically while examining the convergence of the * regularization parameters. * Create the OCR classifier. read_ocr_trainf_names ('ocr.trf', CharacterNames, CharacterCount) create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, \ 40, 'none', |CharacterNames|, 42, OCRHandle) * Set up the automatic determination of the regularization * parameters. set_regularization_params_ocr_class_mlp (OCRHandle, 'weight_prior', \ [0.01,0.01,0.01,0.01]) set_regularization_params_ocr_class_mlp (OCRHandle, \ 'num_outer_iterations', 1) for OuterIt := 1 to 10 by 1 * Train the classifier. trainf_ocr_class_mlp (OCRHandle, 'ocr.trf', 100, 1, 0.01, Error, \ ErrorLog) * Read out the regularization parameters get_regularization_params_ocr_class_mlp (OCRHandle, \ 'weight_prior', \ WeightPrior) * Inspect the regularization parameters manually for * convergence and exit the loop manually if they have * converged. * [...] endfor * Read out the estimate of the number of well-determined * parameters. get_regularization_params_ocr_class_mlp (OCRHandle, \ 'fraction_well_determined_params', \ FractionParams) * If FractionParams differs substantially from 1, consider reducing * NumHidden appropriately and consider performing a preprocessing that * reduces the number of input variables to the net, i.e., canonical * variates or principal components. write_ocr_class_mlp (OCRHandle, 'ocr.omc')
If the parameters are valid, the operator
set_regularization_params_ocr_class_mlp
returns the value
TRUE. If necessary, an exception is raised.
get_regularization_params_ocr_class_mlp
,
trainf_ocr_class_mlp
OCR/OCV