a tuple [width, height] and [column, row],
respectively.
The parameter PaddingPaddingPaddingPaddingpaddingpadding determines the padding, thus
how many pixels with value 0 are appended on the boarder of the
processed input image. Supported values are:
'implicit'"implicit""implicit""implicit""implicit""implicit": No pixels are appended on the left
or on the top of the input image. The number of pixels appended on the
right or lower bound of the input image is
,
or zero if the kernel size is a divisor of the input dimension.
stands for the input width or height.
'none'"none""none""none""none""none": No pixels are appended.
Number of pixels: Specify the number of pixels
appended on each border. To do so, the following tuple lengths are
supported:
Single number: Padding in all four directions
left/right/top/bottom.
Two numbers: Padding in left/right and top/bottom:
[l/r, t/b].
Four numbers: Padding on left, right, top, bottom side:
[l,r,t,b].
Restriction:'runtime'"runtime""runtime""runtime""runtime""runtime"'gpu'"gpu""gpu""gpu""gpu""gpu" does
not support asymmetric padding, i.e., the padding values for the
left and right side must be equal, as well as the padding values for
the top and bottom side.
The output dimensions of the pooling layer are given by
Thereby we use the following values:
: output width,
: input width,
: number of pixels added to the left/top of
the input image, and
: number of pixels added to the right/bottom of
the input image.
The parameter ModeModeModeModemodemode specifies the mode of the pooling operation.
Supported modes are:
Same as mode 'average'"average""average""average""average""average", but
the internally used kernel size is changed to
and the internally used stride is set to the new kernel size. Following the
above formula, this can be used to control the desired output dimensions
without the knowledge of the dimensions of the input dimensions. E.g.,
if the average over all pixel values of the input shall be returned, set
the KernelSizeKernelSizeKernelSizeKernelSizekernelSizekernel_size to 1 and the output
width and height is equal to 1.
As a consequence, the output dimension equals
KernelSizeKernelSizeKernelSizeKernelSizekernelSizekernel_size if KernelSizeKernelSizeKernelSizeKernelSizekernelSizekernel_size is a divisor of the input
dimension.
Same as mode 'global_average'"global_average""global_average""global_average""global_average""global_average",
but the maximum is calculated instead of the average.
For more information about the pooling layer see the
“Solution Guide on Classification”.
Determines whether apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelApplyDlModelapply_dl_model will include the output of this
layer in the dictionary DLResultBatchDLResultBatchDLResultBatchDLResultBatchDLResultBatchdlresult_batch even without specifying this
layer in OutputsOutputsOutputsOutputsoutputsoutputs ('true'"true""true""true""true""true") or not ('false'"false""false""false""false""false").
List of values: 'average'"average""average""average""average""average", 'global_average'"global_average""global_average""global_average""global_average""global_average", 'global_maximum'"global_maximum""global_maximum""global_maximum""global_maximum""global_maximum", 'maximum'"maximum""maximum""maximum""maximum""maximum"
List of values: 'is_inference_output'"is_inference_output""is_inference_output""is_inference_output""is_inference_output""is_inference_output", 'num_trainable_params'"num_trainable_params""num_trainable_params""num_trainable_params""num_trainable_params""num_trainable_params"