create_dl_layer_transposed_convolution T_create_dl_layer_transposed_convolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution create_dl_layer_transposed_convolution (Operator)
Name
create_dl_layer_transposed_convolution T_create_dl_layer_transposed_convolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution create_dl_layer_transposed_convolution
— Create a transposed convolution layer.
Signature
void CreateDlLayerTransposedConvolution (const HTuple& DLLayerInput , const HTuple& LayerName , const HTuple& KernelSize , const HTuple& Stride , const HTuple& KernelDepth , const HTuple& Groups , const HTuple& Padding , const HTuple& GenParamName , const HTuple& GenParamValue , HTuple* DLLayerTransposedConvolution )
HDlLayer HDlLayer ::CreateDlLayerTransposedConvolution (const HString& LayerName , Hlong KernelSize , Hlong Stride , Hlong KernelDepth , Hlong Groups , const HString& Padding , const HTuple& GenParamName , const HTuple& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerTransposedConvolution (const HString& LayerName , Hlong KernelSize , Hlong Stride , Hlong KernelDepth , Hlong Groups , const HString& Padding , const HString& GenParamName , const HString& GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerTransposedConvolution (const char* LayerName , Hlong KernelSize , Hlong Stride , Hlong KernelDepth , Hlong Groups , const char* Padding , const char* GenParamName , const char* GenParamValue ) const
HDlLayer HDlLayer ::CreateDlLayerTransposedConvolution (const wchar_t* LayerName , Hlong KernelSize , Hlong Stride , Hlong KernelDepth , Hlong Groups , const wchar_t* Padding , const wchar_t* GenParamName , const wchar_t* GenParamValue ) const
(Windows only)
static void HOperatorSet .CreateDlLayerTransposedConvolution (HTuple DLLayerInput , HTuple layerName , HTuple kernelSize , HTuple stride , HTuple kernelDepth , HTuple groups , HTuple padding , HTuple genParamName , HTuple genParamValue , out HTuple DLLayerTransposedConvolution )
HDlLayer HDlLayer .CreateDlLayerTransposedConvolution (string layerName , int kernelSize , int stride , int kernelDepth , int groups , string padding , HTuple genParamName , HTuple genParamValue )
HDlLayer HDlLayer .CreateDlLayerTransposedConvolution (string layerName , int kernelSize , int stride , int kernelDepth , int groups , string padding , string genParamName , string genParamValue )
def create_dl_layer_transposed_convolution (dllayer_input : HHandle, layer_name : str, kernel_size : int, stride : int, kernel_depth : int, groups : int, padding : str, gen_param_name : MaybeSequence[str], gen_param_value : MaybeSequence[Union[int, float, str]]) -> HHandle
Description
The operator create_dl_layer_transposed_convolution create_dl_layer_transposed_convolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution create_dl_layer_transposed_convolution
creates a
transposed convolution layer whose handle is returned in
DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution dllayer_transposed_convolution
.
The parameter DLLayerInput DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
determines the feeding input layer and
expects the layer handle as value.
The parameter LayerName LayerName LayerName LayerName layerName layer_name
sets an individual layer name.
Note that if creating a model using create_dl_model create_dl_model CreateDlModel CreateDlModel CreateDlModel create_dl_model
each layer of
the created network must have a unique name.
The parameter KernelSize KernelSize KernelSize KernelSize kernelSize kernel_size
specifies the filter kernel in the
dimensions width
and height
.
So far, only quadratic kernels are supported.
Restriction: This value must be a tuple of length 1.
The parameter Stride Stride Stride Stride stride stride
determines how the filter is shifted in
row
and column
direction.
Restriction: This value must be a tuple of length 1.
The parameter KernelDepth KernelDepth KernelDepth KernelDepth kernelDepth kernel_depth
defines the depth of the output feature
maps.
Restriction: This value must be a tuple of length 1.
The parameter Groups Groups Groups Groups groups groups
determines the amount of filter groups.
So far, only a single filter group is supported.
Restriction: This value must be a tuple of length 1.
The parameter Padding Padding Padding Padding padding padding
determines the padding, thus
how many pixels with value 0 are appended on the border of the
processed input image. Supported values are:
So far, the transposed convolution layer does not support bias terms.
The following generic parameters GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name
and the corresponding
values GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
are supported:
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term" :
Determines, whether the layer has bias terms.
As mentioned above, bias terms are not supported yet, so this value is
only retrievable.
Default: 'false' "false" "false" "false" "false" "false"
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" :
Determines whether apply_dl_model apply_dl_model ApplyDlModel ApplyDlModel ApplyDlModel apply_dl_model
will include the output of this
layer in the dictionary DLResultBatch DLResultBatch DLResultBatch DLResultBatch DLResultBatch dlresult_batch
even without specifying this
layer in Outputs Outputs Outputs Outputs outputs outputs
('true' "true" "true" "true" "true" "true" ) or not ('false' "false" "false" "false" "false" "false" ).
Default: 'false' "false" "false" "false" "false" "false"
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" :
Learning rate multiplier
for this layer that is used during training.
If 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" is set to 0.0 , the layer is
skipped during training.
Default: 1.0
'num_trainable_params' "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" :
Number of trainable parameters (weights and biases) of the layer.
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" :
Defines the mode how the weights are
initialized.
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" "msra" ,
'const' "const" "const" "const" "const" "const"
Default: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier"
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" :
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
Default: 0.5
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" :
Value range for
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" .
See create_dl_layer_convolution create_dl_layer_convolution CreateDlLayerConvolution CreateDlLayerConvolution CreateDlLayerConvolution create_dl_layer_convolution
for a detailed explanation of
this parameter and its values.
List of values: 'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" "norm_average" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in" ,
'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out" , constant value (in combination with
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" = 'msra' "msra" "msra" "msra" "msra" "msra" )
Default: 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in"
Certain parameters of layers created using this operator
create_dl_layer_transposed_convolution create_dl_layer_transposed_convolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution CreateDlLayerTransposedConvolution create_dl_layer_transposed_convolution
can be set and retrieved using
further operators.
The following tables give an overview, which parameters can be set
using set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and which ones can be retrieved
using get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
or get_dl_layer_param get_dl_layer_param GetDlLayerParam GetDlLayerParam GetDlLayerParam get_dl_layer_param
.
Note, the operators set_dl_model_layer_param set_dl_model_layer_param SetDlModelLayerParam SetDlModelLayerParam SetDlModelLayerParam set_dl_model_layer_param
and
get_dl_model_layer_param get_dl_model_layer_param GetDlModelLayerParam GetDlModelLayerParam GetDlModelLayerParam get_dl_model_layer_param
require a model created by
create_dl_model create_dl_model CreateDlModel CreateDlModel CreateDlModel create_dl_model
.
Generic Layer Parameters
set
get
'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term"
'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output"
'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier"
'num_trainable_params' "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params"
'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler"
'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val"
'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
Attention
This layer cannot be run by setting 'runtime' "runtime" "runtime" "runtime" "runtime" "runtime" to 'cpu' "cpu" "cpu" "cpu" "cpu" "cpu"
for training.
It is only applicable for training with a GPU by setting 'runtime' "runtime" "runtime" "runtime" "runtime" "runtime"
to 'gpu' "gpu" "gpu" "gpu" "gpu" "gpu" .
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
DLLayerInput DLLayerInput DLLayerInput DLLayerInput DLLayerInput dllayer_input
(input_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Feeding layer.
LayerName LayerName LayerName LayerName layerName layer_name
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Name of the output layer.
KernelSize KernelSize KernelSize KernelSize kernelSize kernel_size
(input_control) number →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Width and height of the filter kernels.
Default value: 3
Stride Stride Stride Stride stride stride
(input_control) number →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Amount of filter shift.
Default value: 1
KernelDepth KernelDepth KernelDepth KernelDepth kernelDepth kernel_depth
(input_control) number →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Depth of filter kernels.
Default value: 64
Groups Groups Groups Groups groups groups
(input_control) number →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Number of filter groups.
Default value: 1
Padding Padding Padding Padding padding padding
(input_control) number →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Type of the padding.
Default value:
'none'
"none"
"none"
"none"
"none"
"none"
List of values: 'half_kernel_size' "half_kernel_size" "half_kernel_size" "half_kernel_size" "half_kernel_size" "half_kernel_size" , 'none' "none" "none" "none" "none" "none"
GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name
(input_control) attribute.name(-array) →
HTuple MaybeSequence[str] HTuple Htuple (string) (string ) (HString ) (char* )
Generic input parameter names.
Default value: []
List of values: 'bias_term' "bias_term" "bias_term" "bias_term" "bias_term" "bias_term" , 'is_inference_output' "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" "is_inference_output" , 'learning_rate_multiplier' "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" "learning_rate_multiplier" , 'num_trainable_params' "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" "num_trainable_params" , 'weight_filler' "weight_filler" "weight_filler" "weight_filler" "weight_filler" "weight_filler" , 'weight_filler_const_val' "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" "weight_filler_const_val" , 'weight_filler_variance_norm' "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm" "weight_filler_variance_norm"
GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value
(input_control) attribute.value(-array) →
HTuple MaybeSequence[Union[int, float, str]] HTuple Htuple (string / integer / real) (string / int / long / double) (HString / Hlong / double) (char* / Hlong / double)
Generic input parameter values.
Default value: []
Suggested values: 'xavier' "xavier" "xavier" "xavier" "xavier" "xavier" , 'msra' "msra" "msra" "msra" "msra" "msra" , 'const' "const" "const" "const" "const" "const" , 'norm_in' "norm_in" "norm_in" "norm_in" "norm_in" "norm_in" , 'norm_out' "norm_out" "norm_out" "norm_out" "norm_out" "norm_out" , 'norm_average' "norm_average" "norm_average" "norm_average" "norm_average" "norm_average" , 'true' "true" "true" "true" "true" "true" , 'false' "false" "false" "false" "false" "false"
DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution DLLayerTransposedConvolution dllayer_transposed_convolution
(output_control) dl_layer →
HDlLayer , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Transposed convolutional layer.
Module
Deep Learning Training