elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld elliptic_axis_xld (Operator)
Name
elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld elliptic_axis_xld
— Parameters of the equivalent ellipse of contours or polygons.
Signature
Herror elliptic_axis_xld (const Hobject XLD , double* Ra , double* Rb , double* Phi )
Herror T_elliptic_axis_xld (const Hobject XLD , Htuple* Ra , Htuple* Rb , Htuple* Phi )
void EllipticAxisXld (const HObject& XLD , HTuple* Ra , HTuple* Rb , HTuple* Phi )
HTuple HXLD ::EllipticAxisXld (HTuple* Rb , HTuple* Phi ) const
double HXLD ::EllipticAxisXld (double* Rb , double* Phi ) const
def elliptic_axis_xld (xld : HObject) -> Tuple[Sequence[float], Sequence[float], Sequence[float]]
def elliptic_axis_xld_s (xld : HObject) -> Tuple[float, float, float]
Description
The operator elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld EllipticAxisXld elliptic_axis_xld
calculates the radii and the
orientations of the ellipses having the same orientation and the same
aspect ratio as the input contours or polygons.
The length of the major radius
Ra Ra Ra Ra ra ra
and the minor radius Rb Rb Rb Rb rb rb
as well as the
orientation of the main axis with regard to the horizontal
(Phi Phi Phi Phi phi phi
) are determined. The angle is indicated in radians.
It is assumed that the contours or polygons are closed. If this is
not the case elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld EllipticAxisXld elliptic_axis_xld
will artificially close the
contours or polygons.
Calculation:
If the moments
,
and
are
normalized and passed to the area (see moments_xld moments_xld MomentsXld MomentsXld MomentsXld moments_xld
),
the radii Ra Ra Ra Ra ra ra
and Rb Rb Rb Rb rb rb
are calculated as:
The orientation Phi Phi Phi Phi phi phi
is defined by:
It should be noted that elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld EllipticAxisXld elliptic_axis_xld
only returns
useful results if the contour or polygon encloses a region in the
plane. In particular, the contour or polygon must not intersect
itself. This is particularly important if open contours or polygons
are passed because they are closed automatically, which can produce
a self-intersection. To test whether the contours or polygons
intersect themselves, test_self_intersection_xld test_self_intersection_xld TestSelfIntersectionXld TestSelfIntersectionXld TestSelfIntersectionXld test_self_intersection_xld
can be
used. If the contour or polygon intersects itself, useful values
for the ellipse parameters can be calculated with
elliptic_axis_points_xld elliptic_axis_points_xld EllipticAxisPointsXld EllipticAxisPointsXld EllipticAxisPointsXld elliptic_axis_points_xld
.
If more than one contour or polygon is passed, the results are stored
in tuples in the same order as the respective contours or polygons in
XLD XLD XLD XLD XLD xld
.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Automatically parallelized on tuple level.
Parameters
XLD XLD XLD XLD XLD xld
(input_object) xld(-array) →
object HXLD HObject HXLD Hobject
Contours or polygons to be examined.
Ra Ra Ra Ra ra ra
(output_control) real(-array) →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Major radius.
Assertion: Ra >= 0.0
Rb Rb Rb Rb rb rb
(output_control) real(-array) →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Minor radius.
Assertion: Rb >= 0.0 && Rb <= Ra
Phi Phi Phi Phi phi phi
(output_control) angle.rad(-array) →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Angle between the major axis and the x axis
(radians).
Assertion: - pi / 2 < Phi && Phi <= pi / 2
Complexity
If N is the number of contour or polygon points, the runtime complexity is
O(N).
Result
elliptic_axis_xld elliptic_axis_xld EllipticAxisXld EllipticAxisXld EllipticAxisXld elliptic_axis_xld
returns TRUE if the input is not empty.
If the input is empty the behavior can be set via
set_system(::'no_object_result',<Result>:) set_system("no_object_result",<Result>) SetSystem("no_object_result",<Result>) SetSystem("no_object_result",<Result>) SetSystem("no_object_result",<Result>) set_system("no_object_result",<Result>)
. If
necessary, an exception is raised.
Possible Predecessors
gen_contours_skeleton_xld gen_contours_skeleton_xld GenContoursSkeletonXld GenContoursSkeletonXld GenContoursSkeletonXld gen_contours_skeleton_xld
,
edges_sub_pix edges_sub_pix EdgesSubPix EdgesSubPix EdgesSubPix edges_sub_pix
,
threshold_sub_pix threshold_sub_pix ThresholdSubPix ThresholdSubPix ThresholdSubPix threshold_sub_pix
,
gen_contour_polygon_xld gen_contour_polygon_xld GenContourPolygonXld GenContourPolygonXld GenContourPolygonXld gen_contour_polygon_xld
,
test_self_intersection_xld test_self_intersection_xld TestSelfIntersectionXld TestSelfIntersectionXld TestSelfIntersectionXld test_self_intersection_xld
Possible Successors
area_center_xld area_center_xld AreaCenterXld AreaCenterXld AreaCenterXld area_center_xld
,
gen_ellipse_contour_xld gen_ellipse_contour_xld GenEllipseContourXld GenEllipseContourXld GenEllipseContourXld gen_ellipse_contour_xld
Alternatives
elliptic_axis_points_xld elliptic_axis_points_xld EllipticAxisPointsXld EllipticAxisPointsXld EllipticAxisPointsXld elliptic_axis_points_xld
,
smallest_rectangle2 smallest_rectangle2 SmallestRectangle2 SmallestRectangle2 SmallestRectangle2 smallest_rectangle2
See also
moments_xld moments_xld MomentsXld MomentsXld MomentsXld moments_xld
,
smallest_circle_xld smallest_circle_xld SmallestCircleXld SmallestCircleXld SmallestCircleXld smallest_circle_xld
,
smallest_rectangle1_xld smallest_rectangle1_xld SmallestRectangle1Xld SmallestRectangle1Xld SmallestRectangle1Xld smallest_rectangle1_xld
,
smallest_rectangle2_xld smallest_rectangle2_xld SmallestRectangle2Xld SmallestRectangle2Xld SmallestRectangle2Xld smallest_rectangle2_xld
,
shape_trans_xld shape_trans_xld ShapeTransXld ShapeTransXld ShapeTransXld shape_trans_xld
References
R. Haralick, L. Shapiro
“Computer and Robot Vision”
Addison-Wesley, 1992, pp. 73-75
Module
Foundation