get_prep_info_class_mlpT_get_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp (Operator)
Name
get_prep_info_class_mlpT_get_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
— Compute the information content of the preprocessed feature vectors
of a multilayer perceptron.
Signature
def get_prep_info_class_mlp(mlphandle: HHandle, preprocessing: str) -> Tuple[Sequence[float], Sequence[float]]
Description
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
computes the information content of
the training vectors that have been transformed with the
preprocessing given by PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
.
PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
can be set to 'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components"
or 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates". The preprocessing methods are
described with create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
. The information content is
derived from the variations of the transformed components of the
feature vector, i.e., it is computed solely based on the training
data, independent of any error rate on the training data. The
information content is computed for all relevant components of the
transformed feature vectors (NumInputNumInputNumInputNumInputnumInputnum_input
for
'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components" and min(NumOutputNumOutputNumOutputNumOutputnumOutputnum_output
- 1,
NumInputNumInputNumInputNumInputnumInputnum_input
) for 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates", see
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
), and is returned in
InformationContInformationContInformationContInformationContinformationContinformation_cont
as a number between 0 and 1. To convert
the information content into a percentage, it simply needs to be
multiplied by 100. The cumulative information content of the first
n components is returned in the n-th component of
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
, i.e., CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
contains the sums of the first n elements of
InformationContInformationContInformationContInformationContinformationContinformation_cont
. To use get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
, a
sufficient number of samples must be added to the multilayer
perceptron (MLP) given by MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
by using
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
or read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
.
InformationContInformationContInformationContInformationContinformationContinformation_cont
and CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
can be used
to decide how many components of the transformed feature vectors
contain relevant information. An often used criterion is to require
that the transformed data must represent x% (e.g., 90%) of the
data. This can be decided easily from the first value of
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
that lies above x%. The number thus
obtained can be used as the value for NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in a
new call to create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
. The call to
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
already requires the creation of an
MLP, and hence the setting of NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
to an initial value. However, if
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
is called it is typically not known
how many components are relevant, and hence how to set
NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in this call. Therefore, the following
two-step approach should typically be used to select
NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
: In a first step, an MLP with the maximum
number for NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
is created (NumInputNumInputNumInputNumInputnumInputnum_input
for
'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components" and
min(NumOutputNumOutputNumOutputNumOutputnumOutputnum_output
- 1, NumInputNumInputNumInputNumInputnumInputnum_input
)
for 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates"). Then, the
training samples are added to the MLP and are saved in a file using
write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp
. Subsequently,
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
is used to determine the information
content of the components, and with this NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
.
After this, a new MLP with the desired number of components is
created, and the training samples are read with
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
. Finally, the MLP is trained with
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
(input_control) class_mlp →
HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Type of preprocessing used to transform the
feature vectors.
Default value:
'principal_components'
"principal_components"
"principal_components"
"principal_components"
"principal_components"
"principal_components"
List of values: 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates", 'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components"
InformationContInformationContInformationContInformationContinformationContinformation_cont
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Relative information content of the transformed
feature vectors.
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Cumulative information content of the transformed
feature vectors.
Example (HDevelop)
* Create the initial MLP
create_class_mlp (NumIn, NumHidden, NumOut, 'softmax', \
'principal_components', NumIn, 42, MLPHandle)
* Generate and add the training data
for J := 0 to NumData-1 by 1
* Generate training features and classes
* Data = [...]
* Class = [...]
add_sample_class_mlp (MLPHandle, Data, Class)
endfor
write_samples_class_mlp (MLPHandle, 'samples.mtf')
* Compute the information content of the transformed features
get_prep_info_class_mlp (MLPHandle, 'principal_components',\
InformationCont, CumInformationCont)
* Determine NumComp by inspecting InformationCont and CumInformationCont
* NumComp = [...]
* Create the actual MLP
create_class_mlp (NumIn, NumHidden, NumOut, 'softmax', \
'principal_components', NumComp, 42, MLPHandle)
* Train the MLP
read_samples_class_mlp (MLPHandle, 'samples.mtf')
train_class_mlp (MLPHandle, 100, 1, 0.01, Error, ErrorLog)
write_class_mlp (MLPHandle, 'classifier.mlp')
Result
If the parameters are valid, the operator
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
returns the value TRUE. If
necessary an exception is raised.
get_prep_info_class_mlpget_prep_info_class_mlpGetPrepInfoClassMlpGetPrepInfoClassMlpGetPrepInfoClassMlpget_prep_info_class_mlp
may return the error 9211 (Matrix is
not positive definite) if PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
=
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates
that not enough training samples have been stored for each class.
Possible Predecessors
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
,
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
Possible Successors
clear_class_mlpclear_class_mlpClearClassMlpClearClassMlpClearClassMlpclear_class_mlp
,
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
References
Christopher M. Bishop: “Neural Networks for Pattern Recognition”;
Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London;
1999.
Module
Foundation