get_sample_class_mlpT_get_sample_class_mlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp (Operator)
Name
get_sample_class_mlpT_get_sample_class_mlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp
— Return a training sample from the training data of a multilayer
perceptron.
Signature
def get_sample_class_mlp(mlphandle: HHandle, index_sample: int) -> Tuple[Sequence[float], Sequence[float]]
Description
get_sample_class_mlpget_sample_class_mlpGetSampleClassMlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp
reads out a training sample from the
multilayer perceptron (MLP) given by MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
that was
added with add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
or
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
. The index of the sample is
specified with IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample
. The index is counted from 0,
i.e., IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample
must be a number between 0 and
NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples
- 1, where NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples
can be
determined with get_sample_num_class_mlpget_sample_num_class_mlpGetSampleNumClassMlpGetSampleNumClassMlpGetSampleNumClassMlpget_sample_num_class_mlp
. The training
sample is returned in FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
and TargetTargetTargetTargettargettarget
.
FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
is a feature vector of length NumInputNumInputNumInputNumInputnumInputnum_input
,
while TargetTargetTargetTargettargettarget
is a target vector of length
NumOutputNumOutputNumOutputNumOutputnumOutputnum_output
(see add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
and
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
).
get_sample_class_mlpget_sample_class_mlpGetSampleClassMlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp
can, for example, be used to reclassify
the training data with classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
in order to
determine which training samples, if any, are classified
incorrectly.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
(input_control) class_mlp →
HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
IndexSampleIndexSampleIndexSampleIndexSampleindexSampleindex_sample
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Number of stored training sample.
FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector of the training sample.
TargetTargetTargetTargettargettarget
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Target vector of the training sample.
Example (HDevelop)
* Train an MLP
create_class_mlp (NumIn, NumHidden, NumOut, 'softmax', \
'canonical_variates', NumComp, 42, MLPHandle)
read_samples_class_mlp (MLPHandle, 'samples.mtf')
train_class_mlp (MLPHandle, 100, 1, 0.01, Error, ErrorLog)
* Reclassify the training samples
get_sample_num_class_mlp (MLPHandle, NumSamples)
for I := 0 to NumSamples-1 by 1
get_sample_class_mlp (MLPHandle, I, Data, Target)
classify_class_mlp (MLPHandle, Data, 1, Class, Confidence)
Result := gen_tuple_const(NumOut,0)
Result[Class] := 1
Diffs := Target-Result
if (sum(fabs(Diffs)) > 0)
* Sample has been classified incorrectly
endif
endfor
Result
If the parameters are valid, the operator
get_sample_class_mlpget_sample_class_mlpGetSampleClassMlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp
returns the value TRUE. If necessary,
an exception is raised.
Possible Predecessors
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
,
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
,
get_sample_num_class_mlpget_sample_num_class_mlpGetSampleNumClassMlpGetSampleNumClassMlpGetSampleNumClassMlpget_sample_num_class_mlp
Possible Successors
classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
,
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
See also
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
Module
Foundation