match_rel_pose_ransac T_match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac (Operator)
Name
match_rel_pose_ransac T_match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
— Compute the relative orientation between two cameras by automatically
finding correspondences between image points.
Signature
match_rel_pose_ransac (Image1 , Image2 : : Rows1 , Cols1 , Rows2 , Cols2 , CamPar1 , CamPar2 , GrayMatchMethod , MaskSize , RowMove , ColMove , RowTolerance , ColTolerance , Rotation , MatchThreshold , EstimationMethod , DistanceThreshold , RandSeed : RelPose , CovRelPose , Error , Points1 , Points2 )
Herror T_match_rel_pose_ransac (const Hobject Image1 , const Hobject Image2 , const Htuple Rows1 , const Htuple Cols1 , const Htuple Rows2 , const Htuple Cols2 , const Htuple CamPar1 , const Htuple CamPar2 , const Htuple GrayMatchMethod , const Htuple MaskSize , const Htuple RowMove , const Htuple ColMove , const Htuple RowTolerance , const Htuple ColTolerance , const Htuple Rotation , const Htuple MatchThreshold , const Htuple EstimationMethod , const Htuple DistanceThreshold , const Htuple RandSeed , Htuple* RelPose , Htuple* CovRelPose , Htuple* Error , Htuple* Points1 , Htuple* Points2 )
void MatchRelPoseRansac (const HObject& Image1 , const HObject& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HTuple& CamPar1 , const HTuple& CamPar2 , const HTuple& GrayMatchMethod , const HTuple& MaskSize , const HTuple& RowMove , const HTuple& ColMove , const HTuple& RowTolerance , const HTuple& ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HTuple& EstimationMethod , const HTuple& DistanceThreshold , const HTuple& RandSeed , HTuple* RelPose , HTuple* CovRelPose , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HPose HImage ::MatchRelPoseRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , HTuple* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HImage ::MatchRelPoseRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HImage ::MatchRelPoseRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HImage ::MatchRelPoseRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(Windows only)
HPose HCamPar ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , HTuple* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HCamPar ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HCamPar ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HPose HCamPar ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovRelPose , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(Windows only)
HTuple HPose ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HPose ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HPose ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
HTuple HPose ::MatchRelPoseRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HCamPar& CamPar1 , const HCamPar& CamPar2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
(Windows only)
static void HOperatorSet .MatchRelPoseRansac (HObject image1 , HObject image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HTuple camPar1 , HTuple camPar2 , HTuple grayMatchMethod , HTuple maskSize , HTuple rowMove , HTuple colMove , HTuple rowTolerance , HTuple colTolerance , HTuple rotation , HTuple matchThreshold , HTuple estimationMethod , HTuple distanceThreshold , HTuple randSeed , out HTuple relPose , out HTuple covRelPose , out HTuple error , out HTuple points1 , out HTuple points2 )
HPose HImage .MatchRelPoseRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar1 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple covRelPose , out HTuple error , out HTuple points1 , out HTuple points2 )
HPose HImage .MatchRelPoseRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar1 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out HTuple covRelPose , out double error , out HTuple points1 , out HTuple points2 )
HPose HCamPar .MatchRelPoseRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple covRelPose , out HTuple error , out HTuple points1 , out HTuple points2 )
HPose HCamPar .MatchRelPoseRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out HTuple covRelPose , out double error , out HTuple points1 , out HTuple points2 )
HTuple HPose .MatchRelPoseRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar1 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple error , out HTuple points1 , out HTuple points2 )
HTuple HPose .MatchRelPoseRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HCamPar camPar1 , HCamPar camPar2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
def match_rel_pose_ransac (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], cam_par_1 : Sequence[Union[float, int, str]], cam_par_2 : Sequence[Union[float, int, str]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[Union[int, float]], Sequence[float], Sequence[float], Sequence[int], Sequence[int]]
def match_rel_pose_ransac_s (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], cam_par_1 : Sequence[Union[float, int, str]], cam_par_2 : Sequence[Union[float, int, str]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[Union[int, float]], Sequence[float], float, Sequence[int], Sequence[int]]
Description
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1 rows_1
,Cols1 Cols1 Cols1 Cols1 cols1 cols_1
) and (Rows2 Rows2 Rows2 Rows2 rows2 rows_2
,Cols2 Cols2 Cols2 Cols2 cols2 cols_2
)
in the stereo images Image1 Image1 Image1 Image1 image1 image_1
and Image2 Image2 Image2 Image2 image2 image_2
along with known internal camera parameters CamPar1 CamPar1 CamPar1 CamPar1 camPar1 cam_par_1
and
CamPar2 CamPar2 CamPar2 CamPar2 camPar2 cam_par_2
,
match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
automatically determines the geometry
of the stereo setup and finds the correspondences between the characteristic
points. The geometry of the stereo setup is represented by the relative pose
RelPose RelPose RelPose RelPose relPose rel_pose
and all corresponding points have to fulfill the epipolar
constraint.
RelPose RelPose RelPose RelPose relPose rel_pose
indicates the relative pose of camera 1 with respect
to camera 2 (See create_pose create_pose CreatePose CreatePose CreatePose create_pose
for more information about
poses and their representations.). This is in accordance with the
explicit calibration of a stereo setup using the operator
calibrate_cameras calibrate_cameras CalibrateCameras CalibrateCameras CalibrateCameras calibrate_cameras
.
Now, let R,t be the rotation and translation
of the relative pose. Then, the essential matrix
E is defined as
, where
denotes the 3x3 skew-symmetric
matrix realizing the cross product with the vector t. The
pose can be determined from the epipolar constraint:
Note, that the essential matrix is a projective entity and thus is
defined up to a scaling factor. From this follows that the
translation vector of the relative pose can only be determined up to
scale too. In fact, the computed translation vector will always be
normalized to unit length. As a consequence, a subsequent
three-dimensional reconstruction of the scene, using for instance
vector_to_rel_pose vector_to_rel_pose VectorToRelPose VectorToRelPose VectorToRelPose vector_to_rel_pose
, can be carried out only
up to a single global scaling factor.
The operator match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
is designed to deal with
a camera model, that includes lens distortions. This is in contrast
to the operator match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac
, which
encompasses only straight line preserving cameras. The camera
parameters are passed in CamPar1 CamPar1 CamPar1 CamPar1 camPar1 cam_par_1
and CamPar2 CamPar2 CamPar2 CamPar2 camPar2 cam_par_2
. The
3D direction vectors
and
are calculated from the point
coordinates (Rows1 Rows1 Rows1 Rows1 rows1 rows_1
,Cols1 Cols1 Cols1 Cols1 cols1 cols_1
) and
(Rows2 Rows2 Rows2 Rows2 rows2 rows_2
,Cols2 Cols2 Cols2 Cols2 cols2 cols_2
) by inverting the process of
projection (see Calibration ).
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
or
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
.
The matching itself is carried out in two steps: first, gray value
correlations of mask windows around the input points in the first
and the second image are determined and an initial matching between
them is generated using the similarity of the windows in both images.
Then, the RANSAC algorithm is applied to find the relative pose
that maximizes the number of correspondences under the epipolar constraint.
The size of the mask windows is MaskSize MaskSize MaskSize MaskSize maskSize mask_size
x MaskSize MaskSize MaskSize MaskSize maskSize mask_size
. Three
metrics for the correlation can be selected. If
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
has the value 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , the sum of
the squared gray value differences is used, 'sad' "sad" "sad" "sad" "sad" "sad" means the
sum of absolute differences, and 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" is the normalized
cross correlation. For details please refer to
binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity binocular_disparity
. The metric is minimized ('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" ,
'sad' "sad" "sad" "sad" "sad" "sad" ) or maximized ('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ) over all possible
point pairs. A thus found matching is only accepted if the value of
the metric is below the value of MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" "sad" ) or above that value
('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ).
To increase the speed of the algorithm, the search area for the
matching operations can be limited. Only points within a window of
points are considered. The offset of the
center of the search window in the second image with respect to the
position of the current point in the first image is given by
RowMove RowMove RowMove RowMove rowMove row_move
and ColMove ColMove ColMove ColMove colMove col_move
.
If the second camera is
rotated around the optical axis with respect to the first camera
the parameter Rotation Rotation Rotation Rotation rotation rotation
may contain an estimate for the
rotation angle or an angle interval in radians. A good guess will
increase the quality of the gray value matching. If the actual
rotation differs too much from the specified estimate the matching
will typically fail. In this case, an angle interval should be
specified, and Rotation Rotation Rotation Rotation rotation rotation
is a tuple with two elements. The
larger the given interval the slower the operator is since the
RANSAC algorithm is run over all angle increments within the
interval.
After the initial matching is completed a randomized search algorithm
(RANSAC) is used to determine the relative pose RelPose RelPose RelPose RelPose relPose rel_pose
.
It tries to find the relative pose that is consistent
with a maximum number of correspondences.
For a point to be accepted, the distance to its corresponding epipolar line
must not exceed the threshold DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
.
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
decides whether the relative
orientation between the cameras is of a special type and which algorithm is
to be applied for its computation.
If EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
is either 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" the relative orientation is arbitrary.
Choosing 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard"
means that the relative motion between the cameras is a pure translation.
The typical application for this special motion case is the
scenario of a single fixed camera looking onto a moving conveyor belt.
In order to get a unique solution in the correspondence problem the minimum
required number of corresponding points is six in the general case and three
in the special, translational case.
The relative pose is computed by a linear algorithm if
'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" is chosen.
With 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard"
the algorithm gives a statistically optimal result, and returns as well the
covariance of the relative pose CovRelPose CovRelPose CovRelPose CovRelPose covRelPose cov_rel_pose
.
Here, 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" and 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" stand for
direct-linear-transformation and gold-standard-algorithm respectively.
Note, that in general the found correspondences differ depending on the
deployed estimation method.
The value Error Error Error Error error error
indicates the overall quality of the estimation
procedure and is the mean Euclidian distance in pixels between the
points and their corresponding epipolar lines.
Point pairs consistent with the mentioned constraints are considered to be
in correspondences. Points1 Points1 Points1 Points1 points1 points_1
contains the indices of the
matched input points from the first image and Points2 Points2 Points2 Points2 points2 points_2
contains
the indices of the corresponding points in the second image.
For the operator match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
a special
configuration of scene points and cameras exists: if all 3D points lie in a
single plane and additionally are all closer to one of the two cameras then
the solution in the essential matrix is not unique but twofold.
As a consequence both solutions are computed and returned by the operator.
This means that the output parameters RelPose RelPose RelPose RelPose relPose rel_pose
, CovRelPose CovRelPose CovRelPose CovRelPose covRelPose cov_rel_pose
and Error Error Error Error error error
are of double length and the values of the second
solution are simply concatenated behind the values of the first one.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
is set to a positive
number the operator yields the same result on every call with the
same parameters because the internally used random number generator
is initialized with the RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
=
0 the random number generator is initialized with the
current time. In this case the results may not be reproducible.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
Image1 Image1 Image1 Image1 image1 image_1
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 1.
Image2 Image2 Image2 Image2 image2 image_2
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 2.
Rows1 Rows1 Rows1 Rows1 rows1 rows_1
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 1.
Restriction: length(Rows1) >= 6 || length(Rows1) >= 3
Cols1 Cols1 Cols1 Cols1 cols1 cols_1
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 1.
Restriction: length(Cols1) == length(Rows1)
Rows2 Rows2 Rows2 Rows2 rows2 rows_2
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 2.
Restriction: length(Rows2) >= 6 || length(Rows2) >= 3
Cols2 Cols2 Cols2 Cols2 cols2 cols_2
(input_control) number-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 2.
Restriction: length(Cols2) == length(Rows2)
CamPar1 CamPar1 CamPar1 CamPar1 camPar1 cam_par_1
(input_control) campar →
HCamPar , HTuple Sequence[Union[float, int, str]] HTuple Htuple (real / integer / string) (double / int / long / string) (double / Hlong / HString) (double / Hlong / char*)
Parameters of the 1st camera.
CamPar2 CamPar2 CamPar2 CamPar2 camPar2 cam_par_2
(input_control) campar →
HCamPar , HTuple Sequence[Union[float, int, str]] HTuple Htuple (real / integer / string) (double / int / long / string) (double / Hlong / HString) (double / Hlong / char*)
Parameters of the 2nd camera.
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Gray value comparison metric.
Default value:
'ssd'
"ssd"
"ssd"
"ssd"
"ssd"
"ssd"
List of values: 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd"
MaskSize MaskSize MaskSize MaskSize maskSize mask_size
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Size of gray value masks.
Default value: 10
Typical range of values: 3
≤
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
mask_size
≤
15
Restriction: MaskSize >= 1
RowMove RowMove RowMove RowMove rowMove row_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average row coordinate shift of corresponding points.
Default value: 0
Typical range of values: 0
≤
RowMove
RowMove
RowMove
RowMove
rowMove
row_move
≤
200
ColMove ColMove ColMove ColMove colMove col_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average column coordinate shift of
corresponding points.
Default value: 0
Typical range of values: 0
≤
ColMove
ColMove
ColMove
ColMove
colMove
col_move
≤
200
RowTolerance RowTolerance RowTolerance RowTolerance rowTolerance row_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half height of matching search window.
Default value: 200
Typical range of values: 50
≤
RowTolerance
RowTolerance
RowTolerance
RowTolerance
rowTolerance
row_tolerance
≤
200
Restriction: RowTolerance >= 1
ColTolerance ColTolerance ColTolerance ColTolerance colTolerance col_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half width of matching search window.
Default value: 200
Typical range of values: 50
≤
ColTolerance
ColTolerance
ColTolerance
ColTolerance
colTolerance
col_tolerance
≤
200
Restriction: ColTolerance >= 1
Rotation Rotation Rotation Rotation rotation rotation
(input_control) angle.rad(-array) →
HTuple MaybeSequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Estimate of the relative orientation of the right image
with respect to the left image.
Default value: 0.0
Suggested values: 0.0, 0.1, -0.1, 0.7854, 1.571, 3.142
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
(input_control) number →
HTuple Union[int, float] HTuple Htuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Threshold for gray value matching.
Default value: 10
Suggested values: 10, 20, 50, 100, 0.9, 0.7
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Algorithm for the computation of the
relative pose and for special pose types.
Default value:
'normalized_dlt'
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
List of values: 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" , 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" , 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt"
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
(input_control) number →
HTuple Union[float, int] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Maximal deviation of a point from its epipolar line.
Default value: 1
Typical range of values: 0.5
≤
DistanceThreshold
DistanceThreshold
DistanceThreshold
DistanceThreshold
distanceThreshold
distance_threshold
≤
5
Restriction: DistanceThreshold > 0
RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Seed for the random number generator.
Default value: 0
RelPose RelPose RelPose RelPose relPose rel_pose
(output_control) pose →
HPose , HTuple Sequence[Union[int, float]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Computed relative orientation of the cameras
(3D pose).
CovRelPose CovRelPose CovRelPose CovRelPose covRelPose cov_rel_pose
(output_control) real-array →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
6x6 covariance matrix of the
relative orientation.
Error Error Error Error error error
(output_control) real(-array) →
HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Root-Mean-Square of the epipolar distance error.
Points1 Points1 Points1 Points1 points1 points_1
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 1.
Points2 Points2 Points2 Points2 points2 points_2
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 2.
Possible Predecessors
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
,
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
Possible Successors
vector_to_rel_pose vector_to_rel_pose VectorToRelPose VectorToRelPose VectorToRelPose vector_to_rel_pose
,
gen_binocular_rectification_map gen_binocular_rectification_map GenBinocularRectificationMap GenBinocularRectificationMap GenBinocularRectificationMap gen_binocular_rectification_map
See also
binocular_calibration binocular_calibration BinocularCalibration BinocularCalibration BinocularCalibration binocular_calibration
,
match_fundamental_matrix_ransac match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac
,
match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac
,
create_pose create_pose CreatePose CreatePose CreatePose create_pose
References
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
Module
3D Metrology