add_samples_image_class_mlpT_add_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp (Operator)
Name
add_samples_image_class_mlpT_add_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
— Add training samples from an image to the training data of a
multilayer perceptron.
Signature
Description
add_samples_image_class_mlpadd_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
adds training samples from the
image ImageImageImageImageimageimage
to the multilayer perceptron (MLP) given by
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
. add_samples_image_class_mlpadd_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
is used to
store the training samples before a classifier to be used for the
pixel classification of multichannel images with
classify_image_class_mlpclassify_image_class_mlpClassifyImageClassMlpClassifyImageClassMlpClassifyImageClassMlpclassify_image_class_mlp
is trained.
add_samples_image_class_mlpadd_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
works analogously to
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
. Because here the MLP is always used
for classification, OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'softmax'"softmax""softmax""softmax""softmax""softmax"
must be specified when the MLP is created with
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
. The image ImageImageImageImageimageimage
must have a
number of channels equal to NumInputNumInputNumInputNumInputnumInputnum_input
, as specified with
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
. The training regions for the
NumOutputNumOutputNumOutputNumOutputnumOutputnum_output
pixel classes are passed in
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
. Hence, ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
must be a tuple
containing NumOutputNumOutputNumOutputNumOutputnumOutputnum_output
regions. The order of the regions in
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
determines the class of the pixels. If there
are no samples for a particular class in ImageImageImageImageimageimage
an empty
region must be passed at the position of the class in
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
. With this mechanism it is possible to use
multiple images to add training samples for all relevant classes to
the MLP by calling add_samples_image_class_mlpadd_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
multiple
times with the different images and suitably chosen regions. The
regions in ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
should contain representative
training samples for the respective classes. Hence, they need not
cover the entire image. The regions in ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
should
not overlap each other, because this would lead to the fact that in
the training data the samples from the overlapping areas would be
assigned to multiple classes, which may lead to slower convergence
of the training and a lower classification performance.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
Parameters
ImageImageImageImageimageimage
(input_object) (multichannel-)image →
objectHImageHObjectHImageHobject (byte / cyclic / direction / int1 / int2 / uint2 / int4 / real)
Training image.
ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions
(input_object) region-array →
objectHRegionHObjectHRegionHobject
Regions of the classes to be trained.
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
(input_control, state is modified) class_mlp →
HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
Result
If the parameters are valid, the operator
add_samples_image_class_mlpadd_samples_image_class_mlpAddSamplesImageClassMlpAddSamplesImageClassMlpAddSamplesImageClassMlpadd_samples_image_class_mlp
returns the value 2 (H_MSG_TRUE). If
necessary an exception is raised.
Possible Predecessors
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
Possible Successors
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
,
write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp
Alternatives
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
See also
classify_image_class_mlpclassify_image_class_mlpClassifyImageClassMlpClassifyImageClassMlpClassifyImageClassMlpclassify_image_class_mlp
,
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp
,
clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp
,
get_sample_num_class_mlpget_sample_num_class_mlpGetSampleNumClassMlpGetSampleNumClassMlpGetSampleNumClassMlpget_sample_num_class_mlp
,
get_sample_class_mlpget_sample_class_mlpGetSampleClassMlpGetSampleClassMlpGetSampleClassMlpget_sample_class_mlp
,
add_samples_image_class_svmadd_samples_image_class_svmAddSamplesImageClassSvmAddSamplesImageClassSvmAddSamplesImageClassSvmadd_samples_image_class_svm
Module
Foundation