eigenvalues_symmetric_matrix T_eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix (Operator)
Name
eigenvalues_symmetric_matrix T_eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix
— Compute the eigenvalues and optionally eigenvectors of a symmetric
matrix.
Signature
Description
The operator eigenvalues_symmetric_matrix eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix
computes all
eigenvalues and, optionally, eigenvectors of the symmetric
Matrix
. The matrix is defined by the matrix handle
MatrixID MatrixID MatrixID MatrixID matrixID matrix_id
. On output, a new matrix Eigenvalues
with the eigenvalues in ascending order and, optionally, a new matrix
Eigenvectors
with the eigenvectors is created. The
operator returns the matrix handles EigenvaluesID EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id
and
EigenvectorsID EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id
of the matrices Eigenvalues
and
Eigenvectors
. Access to the elements of the matrices is
possible e.g., with the operator get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix GetFullMatrix get_full_matrix
.
The computation of eigenvectors can be selected via
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
= 'true' "true" "true" "true" "true" "true" or
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
= 'false' "false" "false" "false" "false" "false" .
Example:
Attention
The upper triangular part of the input Matrix
must
contain the relevant information of the matrix. The strictly
lower triangular part of the matrix is not referenced. If the
referenced part of the input Matrix
is not of the
specified type, an exception is raised.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
MatrixID MatrixID MatrixID MatrixID matrixID matrix_id
(input_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle of the input matrix.
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Computation of the eigenvectors.
Default value:
'false'
"false"
"false"
"false"
"false"
"false"
List of values: 'false' "false" "false" "false" "false" "false" , 'true' "true" "true" "true" "true" "true"
EigenvaluesID EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id
(output_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvalues.
EigenvectorsID EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id
(output_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvectors.
Result
If the parameters are valid, the operator
eigenvalues_symmetric_matrix eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix
returns the value 2 (H_MSG_TRUE ). If
necessary, an exception is raised.
Possible Predecessors
create_matrix create_matrix CreateMatrix CreateMatrix CreateMatrix create_matrix
Possible Successors
get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix GetFullMatrix get_full_matrix
,
get_value_matrix get_value_matrix GetValueMatrix GetValueMatrix GetValueMatrix get_value_matrix
Alternatives
eigenvalues_general_matrix eigenvalues_general_matrix EigenvaluesGeneralMatrix EigenvaluesGeneralMatrix EigenvaluesGeneralMatrix eigenvalues_general_matrix
See also
generalized_eigenvalues_symmetric_matrix generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix
,
generalized_eigenvalues_general_matrix generalized_eigenvalues_general_matrix GeneralizedEigenvaluesGeneralMatrix GeneralizedEigenvaluesGeneralMatrix GeneralizedEigenvaluesGeneralMatrix generalized_eigenvalues_general_matrix
References
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Module
Foundation