get_sample_class_gmmT_get_sample_class_gmmGetSampleClassGmmGetSampleClassGmmget_sample_class_gmm (Operator)
Name
get_sample_class_gmmT_get_sample_class_gmmGetSampleClassGmmGetSampleClassGmmget_sample_class_gmm
— Return a training sample from the training data of a Gaussian
Mixture Models (GMM).
Signature
Description
get_sample_class_gmmget_sample_class_gmmGetSampleClassGmmGetSampleClassGmmGetSampleClassGmmget_sample_class_gmm
reads out a training sample from the
Gaussian Mixture Model (GMM) given by GMMHandleGMMHandleGMMHandleGMMHandleGMMHandlegmmhandle
that was
stored with add_sample_class_gmmadd_sample_class_gmmAddSampleClassGmmAddSampleClassGmmAddSampleClassGmmadd_sample_class_gmm
or
add_samples_image_class_gmmadd_samples_image_class_gmmAddSamplesImageClassGmmAddSamplesImageClassGmmAddSamplesImageClassGmmadd_samples_image_class_gmm
. The index of the sample is
specified with NumSampleNumSampleNumSampleNumSamplenumSamplenum_sample
. The index is counted from 0,
i.e., NumSampleNumSampleNumSampleNumSamplenumSamplenum_sample
must be a number between 0 and
NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples
- 1, where NumSamplesNumSamplesNumSamplesNumSamplesnumSamplesnum_samples
can be
determined with get_sample_num_class_gmmget_sample_num_class_gmmGetSampleNumClassGmmGetSampleNumClassGmmGetSampleNumClassGmmget_sample_num_class_gmm
. The training
sample is returned in FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
and ClassIDClassIDClassIDClassIDclassIDclass_id
.
FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
is a feature vector of length NumDimNumDimNumDimNumDimnumDimnum_dim
,
while ClassIDClassIDClassIDClassIDclassIDclass_id
is its class (see
add_sample_class_gmmadd_sample_class_gmmAddSampleClassGmmAddSampleClassGmmAddSampleClassGmmadd_sample_class_gmm
and create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmCreateClassGmmcreate_class_gmm
).
get_sample_class_gmmget_sample_class_gmmGetSampleClassGmmGetSampleClassGmmGetSampleClassGmmget_sample_class_gmm
can, for example, be used to reclassify
the training data with classify_class_gmmclassify_class_gmmClassifyClassGmmClassifyClassGmmClassifyClassGmmclassify_class_gmm
in order to
determine which training samples, if any, are classified
incorrectly.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
GMMHandleGMMHandleGMMHandleGMMHandleGMMHandlegmmhandle
(input_control) class_gmm →
HClassGmm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
GMM handle.
NumSampleNumSampleNumSampleNumSamplenumSamplenum_sample
(input_control) integer →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Index of the stored training sample.
FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector of the training sample.
ClassIDClassIDClassIDClassIDclassIDclass_id
(output_control) number →
HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Class of the training sample.
Example (HDevelop)
create_class_gmm (2, 2, [1,10], 'spherical', 'none', 2, 42, GMMHandle)
read_samples_class_gmm (GMMHandle, 'samples.gsf')
train_class_gmm (GMMHandle, 100, 1e-4, 'training', 1e-4, Centers, Iter)
* Reclassify the training samples
get_sample_num_class_gmm (GMMHandle, NumSamples)
for I := 0 to NumSamples-1 by 1
get_sample_class_gmm (GMMHandle, I, Features, Class)
classify_class_gmm (GMMHandle, Features, 2, ClassID, ClassProb,\
Density, KSigmaProb)
if (not (Class == ClassProb[0]))
* classified incorrectly
endif
endfor
Result
If the parameters are valid, the operator
get_sample_class_gmmget_sample_class_gmmGetSampleClassGmmGetSampleClassGmmGetSampleClassGmmget_sample_class_gmm
returns the value 2 (H_MSG_TRUE). If necessary
an exception is raised.
Possible Predecessors
add_sample_class_gmmadd_sample_class_gmmAddSampleClassGmmAddSampleClassGmmAddSampleClassGmmadd_sample_class_gmm
,
add_samples_image_class_gmmadd_samples_image_class_gmmAddSamplesImageClassGmmAddSamplesImageClassGmmAddSamplesImageClassGmmadd_samples_image_class_gmm
,
read_samples_class_gmmread_samples_class_gmmReadSamplesClassGmmReadSamplesClassGmmReadSamplesClassGmmread_samples_class_gmm
,
get_sample_num_class_gmmget_sample_num_class_gmmGetSampleNumClassGmmGetSampleNumClassGmmGetSampleNumClassGmmget_sample_num_class_gmm
Possible Successors
classify_class_gmmclassify_class_gmmClassifyClassGmmClassifyClassGmmClassifyClassGmmclassify_class_gmm
,
evaluate_class_gmmevaluate_class_gmmEvaluateClassGmmEvaluateClassGmmEvaluateClassGmmevaluate_class_gmm
See also
create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmCreateClassGmmcreate_class_gmm
Module
Foundation