For linear equation systems, the equations
\texttt{MatrixLHS} * \texttt{MatrixResult} = \texttt{MatrixRHS}
are solved. Therefore, the matrix MatrixLHS must be a
square matrix and the parameter EpsilonEpsilonEpsilonEpsilonepsilonepsilon must be 0. The
type of the matrix MatrixLHS can be selected via the
parameter MatrixLHSTypeMatrixLHSTypeMatrixLHSTypeMatrixLHSTypematrixLHSTypematrix_lhstype. The following values are
supported: 'general'"general""general""general""general""general" for general, 'symmetric'"symmetric""symmetric""symmetric""symmetric""symmetric" for
symmetric, 'positive_definite'"positive_definite""positive_definite""positive_definite""positive_definite""positive_definite" for symmetric positive
definite, 'tridiagonal'"tridiagonal""tridiagonal""tridiagonal""tridiagonal""tridiagonal" for tridiagonal,
'upper_triangular'"upper_triangular""upper_triangular""upper_triangular""upper_triangular""upper_triangular" for upper triangular,
'permuted_upper_triangular'"permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular""permuted_upper_triangular" for permuted upper triangular,
'lower_triangular'"lower_triangular""lower_triangular""lower_triangular""lower_triangular""lower_triangular" for lower triangular, and
'permuted_lower_triangular'"permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular""permuted_lower_triangular" for permuted lower triangular
matrices.
Example:
For linear least squares problems or if EpsilonEpsilonEpsilonEpsilonepsilonepsilon is not 0,
the matrix MatrixLHS need not be a square matrix. The
linear least squares problem is solved using the singular value
decomposition (SVD) of the matrix MatrixLHS by minimizing
||\texttt{MatrixRHS} - \texttt{MatrixLHS} * \texttt{MatrixResult}||.
All singular values less than the value Epsilon * the
largest singular value are set to 0. For these values no
internal division is done to prevent a division by zero.
Also, the matrix MatrixLHS may be rank-deficient. The
type of matrix must be selected via MatrixLHSTypeMatrixLHSTypeMatrixLHSTypeMatrixLHSTypematrixLHSTypematrix_lhstype =
'general'"general""general""general""general""general".
For MatrixLHSTypeMatrixLHSTypeMatrixLHSTypeMatrixLHSTypematrixLHSTypematrix_lhstype = 'symmetric'"symmetric""symmetric""symmetric""symmetric""symmetric",
'positive_definite'"positive_definite""positive_definite""positive_definite""positive_definite""positive_definite", or 'upper_triangular'"upper_triangular""upper_triangular""upper_triangular""upper_triangular""upper_triangular" the
upper triangular part of the input MatrixLHS must contain
the relevant information of the matrix. The strictly lower
triangular part of the matrix is not referenced. For
MatrixLHSTypeMatrixLHSTypeMatrixLHSTypeMatrixLHSTypematrixLHSTypematrix_lhstype = 'lower_triangular'"lower_triangular""lower_triangular""lower_triangular""lower_triangular""lower_triangular" the lower
triangular part of the input MatrixLHS must contain the
relevant information of the matrix. The strictly upper triangular
part of the matrix is not referenced. For MatrixLHSTypeMatrixLHSTypeMatrixLHSTypeMatrixLHSTypematrixLHSTypematrix_lhstype =
'tridiagonal'"tridiagonal""tridiagonal""tridiagonal""tridiagonal""tridiagonal", only the main diagonal, the superdiagonal,
and the subdiagonal of the input MatrixLHS are used. The
other parts of the matrix are not referenced. If the referenced
part of the input MatrixLHS is not of the specified type,
an exception is raised.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
If the parameters are valid, the operator solve_matrixsolve_matrixSolveMatrixSolveMatrixSolveMatrixsolve_matrix
returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.