classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp (Operator)
Name
classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
— Calculate the class of a feature vector by a multilayer perceptron.
Signature
def classify_class_mlp(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[Sequence[int], Sequence[float]]
def classify_class_mlp_s(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[int, float]
Description
classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
computes the best NumNumNumNumnumnum
classes of
the feature vector FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
with the multilayer perceptron
(MLP) MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
and returns the classes in ClassClassClassClassclassValclass
and the corresponding confidences (probabilities) of the classes in
ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence
. Before calling classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
, the
MLP must be trained with train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
.
classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
can only be called if the MLP is used as
a classifier with OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function
= 'softmax'"softmax""softmax""softmax""softmax""softmax"
(see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
). Otherwise, an error message is
returned. classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
corresponds to a call to
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
and an additional step that extracts the
best NumNumNumNumnumnum
classes. As described with
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
, the output values of the MLP can be
interpreted as probabilities of the occurrence of the respective
classes. In most cases it should be sufficient
to use NumNumNumNumnumnum
= 1 in order to decide whether the
probability of the best class is high enough. In some applications
it may be interesting to also take the second best class into
account (NumNumNumNumnumnum
= 2), particularly if it can be
expected that the classes show a significant degree of overlap.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle
(input_control) class_mlp →
HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP handle.
FeaturesFeaturesFeaturesFeaturesfeaturesfeatures
(input_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector.
NumNumNumNumnumnum
(input_control) integer-array →
HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Number of best classes to determine.
Default:
1
Suggested values:
1, 2, 3, 4, 5
ClassClassClassClassclassValclass
(output_control) integer(-array) →
HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Result of classifying the feature vector with
the MLP.
ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence
(output_control) real(-array) →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Confidence(s) of the class(es) of the feature vector.
Result
If the parameters are valid, the operator classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp
returns the value 2 (
H_MSG_TRUE)
. If necessary, an exception is
raised.
Possible Predecessors
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp
,
read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp
Alternatives
apply_dl_classifierapply_dl_classifierApplyDlClassifierApplyDlClassifierApplyDlClassifierapply_dl_classifier
,
evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp
See also
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp
References
Christopher M. Bishop: “Neural Networks for Pattern Recognition”;
Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London;
1999.
Module
Foundation