create_pose T_create_pose CreatePose CreatePose create_pose (Operator)
Name
create_pose T_create_pose CreatePose CreatePose create_pose
— Create a 3D pose.
Signature
void CreatePose (const HTuple& TransX , const HTuple& TransY , const HTuple& TransZ , const HTuple& RotX , const HTuple& RotY , const HTuple& RotZ , const HTuple& OrderOfTransform , const HTuple& OrderOfRotation , const HTuple& ViewOfTransform , HTuple* Pose )
void HPose ::HPose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const HString& OrderOfTransform , const HString& OrderOfRotation , const HString& ViewOfTransform )
void HPose ::HPose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const char* OrderOfTransform , const char* OrderOfRotation , const char* ViewOfTransform )
void HPose ::HPose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const wchar_t* OrderOfTransform , const wchar_t* OrderOfRotation , const wchar_t* ViewOfTransform )
(
Windows only)
void HPose ::CreatePose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const HString& OrderOfTransform , const HString& OrderOfRotation , const HString& ViewOfTransform )
void HPose ::CreatePose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const char* OrderOfTransform , const char* OrderOfRotation , const char* ViewOfTransform )
void HPose ::CreatePose (double TransX , double TransY , double TransZ , double RotX , double RotY , double RotZ , const wchar_t* OrderOfTransform , const wchar_t* OrderOfRotation , const wchar_t* ViewOfTransform )
(
Windows only)
static void HOperatorSet .CreatePose (HTuple transX , HTuple transY , HTuple transZ , HTuple rotX , HTuple rotY , HTuple rotZ , HTuple orderOfTransform , HTuple orderOfRotation , HTuple viewOfTransform , out HTuple pose )
public HPose (double transX , double transY , double transZ , double rotX , double rotY , double rotZ , string orderOfTransform , string orderOfRotation , string viewOfTransform )
void HPose .CreatePose (double transX , double transY , double transZ , double rotX , double rotY , double rotZ , string orderOfTransform , string orderOfRotation , string viewOfTransform )
Description
create_pose create_pose CreatePose CreatePose CreatePose create_pose
creates the 3D pose Pose Pose Pose Pose pose pose
. A pose describes a
rigid 3D transformation, i.e., a transformation consisting of an arbitrary
translation and rotation, with 6 parameters: TransX TransX TransX TransX transX trans_x
,
TransY TransY TransY TransY transY trans_y
, and TransZ TransZ TransZ TransZ transZ trans_z
specify the translation along the x-,
y-, and z-axis, respectively, while RotX RotX RotX RotX rotX rot_x
, RotY RotY RotY RotY rotY rot_y
, and
RotZ RotZ RotZ RotZ rotZ rot_z
describe the rotation.
3D poses are typically used in two ways: First, to describe the position and
orientation of one coordinate system relative to another (e.g., the pose of a
part's coordinate system relative to the camera coordinate system - in short:
the pose of the part relative to the camera) and secondly, to describe how
coordinates can be transformed between two coordinate systems (e.g., to
transform points from part coordinates into camera coordinates).
Representation of orientation (rotation)
A 3D rotation around an arbitrary axis can be represented by 3 parameters in
multiple ways. HALCON lets you choose between three of them with the
parameter OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
: If you pass the value 'gba' "gba" "gba" "gba" "gba" "gba" , the
rotation is described by the following chain of rotations around the three
axes (see hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate hom_mat3d_rotate
for the content for the rotation matrices
):
is referred to
as the Yaw-Pitch-Roll convention in the literature.
Please note that you can “read” this chain in two ways: If you start from
the right, the rotations are always performed relative to the global (i.e.,
fixed or “old”) coordinate system. Thus,
can be read as follows:
First rotate around the z-axis, then around the “old” y-axis, and finally
around the “old” x-axis. In contrast, if you read from the left to the
right, the rotations are performed relative to the local (i.e., “new”)
coordinate system. Then,
corresponds to the following: First rotate around the x-axis, the around the
“new” y-axis, and finally around the “new(est)” z-axis.
Reading
from right to
left corresponds to the following sequence of operator calls:
hom_mat3d_identity(HomMat3DIdent) hom_mat3d_identity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) hom_mat3d_identity(HomMat3DIdent)
hom_mat3d_rotate(HomMat3DIdent, RotZ, 'z', 0, 0, 0, HomMat3DRotZ) hom_mat3d_rotate(HomMat3DIdent, RotZ, "z", 0, 0, 0, HomMat3DRotZ) HomMat3dRotate(HomMat3DIdent, RotZ, "z", 0, 0, 0, HomMat3DRotZ) HomMat3dRotate(HomMat3DIdent, RotZ, "z", 0, 0, 0, HomMat3DRotZ) HomMat3dRotate(HomMat3DIdent, RotZ, "z", 0, 0, 0, HomMat3DRotZ) hom_mat3d_rotate(HomMat3DIdent, RotZ, "z", 0, 0, 0, HomMat3DRotZ)
hom_mat3d_rotate(HomMat3DRotZ, RotY, 'y', 0, 0, 0, HomMat3DRotYZ) hom_mat3d_rotate(HomMat3DRotZ, RotY, "y", 0, 0, 0, HomMat3DRotYZ) HomMat3dRotate(HomMat3DRotZ, RotY, "y", 0, 0, 0, HomMat3DRotYZ) HomMat3dRotate(HomMat3DRotZ, RotY, "y", 0, 0, 0, HomMat3DRotYZ) HomMat3dRotate(HomMat3DRotZ, RotY, "y", 0, 0, 0, HomMat3DRotYZ) hom_mat3d_rotate(HomMat3DRotZ, RotY, "y", 0, 0, 0, HomMat3DRotYZ)
hom_mat3d_rotate(HomMat3DRotYZ, RotX, 'x', 0, 0, 0, HomMat3DXYZ) hom_mat3d_rotate(HomMat3DRotYZ, RotX, "x", 0, 0, 0, HomMat3DXYZ) HomMat3dRotate(HomMat3DRotYZ, RotX, "x", 0, 0, 0, HomMat3DXYZ) HomMat3dRotate(HomMat3DRotYZ, RotX, "x", 0, 0, 0, HomMat3DXYZ) HomMat3dRotate(HomMat3DRotYZ, RotX, "x", 0, 0, 0, HomMat3DXYZ) hom_mat3d_rotate(HomMat3DRotYZ, RotX, "x", 0, 0, 0, HomMat3DXYZ)
In contrast, reading from left to right corresponds to the following operator
sequence:
hom_mat3d_identity(HomMat3DIdent) hom_mat3d_identity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) HomMat3dIdentity(HomMat3DIdent) hom_mat3d_identity(HomMat3DIdent)
hom_mat3d_rotate_local(HomMat3DIdent, RotX, 'x', HomMat3DRotX) hom_mat3d_rotate_local(HomMat3DIdent, RotX, "x", HomMat3DRotX) HomMat3dRotateLocal(HomMat3DIdent, RotX, "x", HomMat3DRotX) HomMat3dRotateLocal(HomMat3DIdent, RotX, "x", HomMat3DRotX) HomMat3dRotateLocal(HomMat3DIdent, RotX, "x", HomMat3DRotX) hom_mat3d_rotate_local(HomMat3DIdent, RotX, "x", HomMat3DRotX)
hom_mat3d_rotate_local(HomMat3DRotX, RotY, 'y', HomMat3DRotXY) hom_mat3d_rotate_local(HomMat3DRotX, RotY, "y", HomMat3DRotXY) HomMat3dRotateLocal(HomMat3DRotX, RotY, "y", HomMat3DRotXY) HomMat3dRotateLocal(HomMat3DRotX, RotY, "y", HomMat3DRotXY) HomMat3dRotateLocal(HomMat3DRotX, RotY, "y", HomMat3DRotXY) hom_mat3d_rotate_local(HomMat3DRotX, RotY, "y", HomMat3DRotXY)
hom_mat3d_rotate_local(HomMat3DRotXY, RotZ, 'z', HomMat3DXYZ) hom_mat3d_rotate_local(HomMat3DRotXY, RotZ, "z", HomMat3DXYZ) HomMat3dRotateLocal(HomMat3DRotXY, RotZ, "z", HomMat3DXYZ) HomMat3dRotateLocal(HomMat3DRotXY, RotZ, "z", HomMat3DXYZ) HomMat3dRotateLocal(HomMat3DRotXY, RotZ, "z", HomMat3DXYZ) hom_mat3d_rotate_local(HomMat3DRotXY, RotZ, "z", HomMat3DXYZ)
When passing 'abg' "abg" "abg" "abg" "abg" "abg" in OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
, the rotation
corresponds to the following chain:
is referred to
as the Roll-Pitch-Yaw convention in the literature.
If you pass 'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez" in OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
, the rotation
parameters RotX RotX RotX RotX rotX rot_x
, RotY RotY RotY RotY rotY rot_y
, and RotZ RotZ RotZ RotZ rotZ rot_z
are interpreted as
the x-, y-, and z-component of the so-called Rodriguez rotation vector. The
direction of the vector defines the (arbitrary) axis of rotation. The length
of the vector usually defines the rotation angle with positive orientation.
Here, a variation of the Rodriguez vector is used, where the length of the
vector defines the tangent of half the rotation angle:
Please note that these 3D poses can be ambiguous, meaning a homogeneous
transformation matrix can have several pose representations.
For example, for
with
the following poses correspond to the same homogeneous transformation
matrix:
create_pose(0, 0, 0, 30, 90, 54, 'Rp+T', 'gba', 'point', Pose1) create_pose(0, 0, 0, 30, 90, 54, "Rp+T", "gba", "point", Pose1) CreatePose(0, 0, 0, 30, 90, 54, "Rp+T", "gba", "point", Pose1) CreatePose(0, 0, 0, 30, 90, 54, "Rp+T", "gba", "point", Pose1) CreatePose(0, 0, 0, 30, 90, 54, "Rp+T", "gba", "point", Pose1) create_pose(0, 0, 0, 30, 90, 54, "Rp+T", "gba", "point", Pose1)
create_pose(0, 0, 0, 17, 90, 67, 'Rp+T', 'gba', 'point', Pose2) create_pose(0, 0, 0, 17, 90, 67, "Rp+T", "gba", "point", Pose2) CreatePose(0, 0, 0, 17, 90, 67, "Rp+T", "gba", "point", Pose2) CreatePose(0, 0, 0, 17, 90, 67, "Rp+T", "gba", "point", Pose2) CreatePose(0, 0, 0, 17, 90, 67, "Rp+T", "gba", "point", Pose2) create_pose(0, 0, 0, 17, 90, 67, "Rp+T", "gba", "point", Pose2)
If this leads to problems, you can instead use homogeneous transformation
matrices or quaternions (axis_angle_to_quat axis_angle_to_quat AxisAngleToQuat AxisAngleToQuat AxisAngleToQuat axis_angle_to_quat
) to represent rotations.
Corresponding homogeneous transformation matrix
You can obtain the homogeneous transformation matrix corresponding to a pose
with the operator pose_to_hom_mat3d pose_to_hom_mat3d PoseToHomMat3d PoseToHomMat3d PoseToHomMat3d pose_to_hom_mat3d
. In the standard definition, this
is the following homogeneous transformation matrix which can be split into
two separate matrices, one for the translation
(H(T)) and one for the rotation
(H(R)):
Transformation of coordinates
The following equation describes how a point can be transformed from
coordinate system 1 (cs 1) into coordinate system 2 (cs 2)
with a pose, or more exactly, with the corresponding homogeneous
transformation matrix
(input and output points as homogeneous vectors, see also
affine_trans_point_3d affine_trans_point_3d AffineTransPoint3d AffineTransPoint3d AffineTransPoint3d affine_trans_point_3d
). Note that to transform points from
cs 1 into cs 2, you use the transformation matrix that
describes the pose of cs 1 relative to cs 2.
This corresponds to the following operator calls:
pose_to_hom_mat3d(PoseOf1In2, HomMat3DFrom1In2) pose_to_hom_mat3d(PoseOf1In2, HomMat3DFrom1In2) PoseToHomMat3d(PoseOf1In2, HomMat3DFrom1In2) PoseToHomMat3d(PoseOf1In2, HomMat3DFrom1In2) PoseToHomMat3d(PoseOf1In2, HomMat3DFrom1In2) pose_to_hom_mat3d(PoseOf1In2, HomMat3DFrom1In2)
affine_trans_point_3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z) affine_trans_point_3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z) AffineTransPoint3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z) AffineTransPoint3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z) AffineTransPoint3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z) affine_trans_point_3d(HomMat3DFrom1In2, P1X, P1Y, P1Z, P2X, P2Y, P2Z)
Non-standard pose definitions
So far, we described the standard pose definition. To create such poses, you
select the (default) values 'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T" for the parameter
OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
and 'point' "point" "point" "point" "point" "point" for ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
.
By specifying other values for these parameters, you can create non-standard
poses types which we describe briefly below. Please note that these
representation types are only supported for backwards compatibility; we
strongly recommend to use the standard types.
If you select 'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" for OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
, the created
pose corresponds to the following chain of transformations, i.e., the
sequence of rotation and translation is reversed and the translation is
negated:
If you select 'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" for ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
, the
sequence of transformations remains constant, but the rotation angles are
negated. Please note that, contrary to its name, this is not equivalent to
transforming a coordinate system!
Returned data structure
The created 3D pose is returned in Pose Pose Pose Pose pose pose
which is a tuple of length
seven. The first three elements hold the translation parameters
TransX TransX TransX TransX transX trans_x
, TransY TransY TransY TransY transY trans_y
, and TransZ TransZ TransZ TransZ transZ trans_z
, followed by the
rotation parameters RotX RotX RotX RotX rotX rot_x
, RotY RotY RotY RotY rotY rot_y
, and RotZ RotZ RotZ RotZ rotZ rot_z
. The last
element codes the representation type of the pose that you selected with
the parameters OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
, OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
, and
ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
. The following table lists the possible
combinations. As already noted, we recommend to use only the representation
types with OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
= 'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T" and
ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
= 'point' "point" "point" "point" "point" "point" (codes 0, 2, and 4).
OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
Code
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'gba' "gba" "gba" "gba" "gba" "gba"
'point' "point" "point" "point" "point" "point"
0
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'abg' "abg" "abg" "abg" "abg" "abg"
'point' "point" "point" "point" "point" "point"
2
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez"
'point' "point" "point" "point" "point" "point"
4
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'gba' "gba" "gba" "gba" "gba" "gba"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
1
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'abg' "abg" "abg" "abg" "abg" "abg"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
3
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T"
'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
5
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'gba' "gba" "gba" "gba" "gba" "gba"
'point' "point" "point" "point" "point" "point"
8
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'abg' "abg" "abg" "abg" "abg" "abg"
'point' "point" "point" "point" "point" "point"
10
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez"
'point' "point" "point" "point" "point" "point"
12
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'gba' "gba" "gba" "gba" "gba" "gba"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
9
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'abg' "abg" "abg" "abg" "abg" "abg"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
11
'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez"
'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
13
You can convert poses into other representation types using
convert_pose_type convert_pose_type ConvertPoseType ConvertPoseType ConvertPoseType convert_pose_type
and query the type using get_pose_type get_pose_type GetPoseType GetPoseType GetPoseType get_pose_type
.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
TransX TransX TransX TransX transX trans_x
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Translation along the x-axis (in [m]).
Default:
0.1
Suggested values:
-1.0, -0.75, -0.5, -0.25, -0.2, -0.1, -0.5, -0.25, -0.125, -0.01, 0.0, 0.01, 0.125, 0.25, 0.5, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0
TransY TransY TransY TransY transY trans_y
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Translation along the y-axis (in [m]).
Default:
0.1
Suggested values:
-1.0, -0.75, -0.5, -0.25, -0.2, -0.1, -0.5, -0.25, -0.125, -0.01, 0.0, 0.01, 0.125, 0.25, 0.5, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0
TransZ TransZ TransZ TransZ transZ trans_z
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Translation along the z-axis (in [m]).
Default:
0.1
Suggested values:
-1.0, -0.75, -0.5, -0.25, -0.2, -0.1, -0.5, -0.25, -0.125, -0.01, 0.0, 0.01, 0.125, 0.25, 0.5, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0
RotX RotX RotX RotX rotX rot_x
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Rotation around x-axis or x component of the Rodriguez
vector (in [°] or without unit).
Default:
90.0
Suggested values:
0.0, 90.0, 180.0, 270.0
Value range:
0
≤
RotX
RotX
RotX
RotX
rotX
rot_x
≤
360
RotY RotY RotY RotY rotY rot_y
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Rotation around y-axis or y component of the Rodriguez
vector (in [°] or without unit).
Default:
90.0
Suggested values:
0.0, 90.0, 180.0, 270.0
Value range:
0
≤
RotY
RotY
RotY
RotY
rotY
rot_y
≤
360
RotZ RotZ RotZ RotZ rotZ rot_z
(input_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Rotation around z-axis or z component of the Rodriguez
vector (in [°] or without unit).
Default:
90.0
Suggested values:
0.0, 90.0, 180.0, 270.0
Value range:
0
≤
RotZ
RotZ
RotZ
RotZ
rotZ
rot_z
≤
360
OrderOfTransform OrderOfTransform OrderOfTransform OrderOfTransform orderOfTransform order_of_transform
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Order of rotation and translation.
Default:
'Rp+T'
"Rp+T"
"Rp+T"
"Rp+T"
"Rp+T"
"Rp+T"
Suggested values:
'Rp+T' "Rp+T" "Rp+T" "Rp+T" "Rp+T" "Rp+T" , 'R(p-T)' "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)" "R(p-T)"
OrderOfRotation OrderOfRotation OrderOfRotation OrderOfRotation orderOfRotation order_of_rotation
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Meaning of the rotation values.
Default:
'gba'
"gba"
"gba"
"gba"
"gba"
"gba"
Suggested values:
'gba' "gba" "gba" "gba" "gba" "gba" , 'abg' "abg" "abg" "abg" "abg" "abg" , 'rodriguez' "rodriguez" "rodriguez" "rodriguez" "rodriguez" "rodriguez"
ViewOfTransform ViewOfTransform ViewOfTransform ViewOfTransform viewOfTransform view_of_transform
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
View of transformation.
Default:
'point'
"point"
"point"
"point"
"point"
"point"
Suggested values:
'point' "point" "point" "point" "point" "point" , 'coordinate_system' "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system" "coordinate_system"
Pose Pose Pose Pose pose pose
(output_control) pose →
HPose , HTuple Sequence[Union[int, float]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
3D pose.
Number of elements:
7
Example (HDevelop)
* Create a pose.
create_pose (0.1, 0.2, 0.3, 40, 50, 60, 'Rp+T', 'gba', 'point', Pose)
Example (HDevelop)
* Create a pose.
create_pose (0.1, 0.2, 0.3, 40, 50, 60, 'Rp+T', 'gba', 'point', Pose)
Example (HDevelop)
* Create a pose.
create_pose (0.1, 0.2, 0.3, 40, 50, 60, 'Rp+T', 'gba', 'point', Pose)
Example (HDevelop)
* Create a pose.
create_pose (0.1, 0.2, 0.3, 40, 50, 60, 'Rp+T', 'gba', 'point', Pose)
Example (HDevelop)
* Create a pose.
create_pose (0.1, 0.2, 0.3, 40, 50, 60, 'Rp+T', 'gba', 'point', Pose)
Result
create_pose create_pose CreatePose CreatePose CreatePose create_pose
returns 2 (
H_MSG_TRUE )
if all parameter values are
correct. If necessary, an exception is raised.
Possible Successors
pose_to_hom_mat3d pose_to_hom_mat3d PoseToHomMat3d PoseToHomMat3d PoseToHomMat3d pose_to_hom_mat3d
,
write_pose write_pose WritePose WritePose WritePose write_pose
,
camera_calibration camera_calibration CameraCalibration CameraCalibration CameraCalibration camera_calibration
,
hand_eye_calibration hand_eye_calibration HandEyeCalibration HandEyeCalibration HandEyeCalibration hand_eye_calibration
Alternatives
read_pose read_pose ReadPose ReadPose ReadPose read_pose
,
hom_mat3d_to_pose hom_mat3d_to_pose HomMat3dToPose HomMat3dToPose HomMat3dToPose hom_mat3d_to_pose
See also
hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate hom_mat3d_rotate
,
hom_mat3d_translate hom_mat3d_translate HomMat3dTranslate HomMat3dTranslate HomMat3dTranslate hom_mat3d_translate
,
convert_pose_type convert_pose_type ConvertPoseType ConvertPoseType ConvertPoseType convert_pose_type
,
get_pose_type get_pose_type GetPoseType GetPoseType GetPoseType get_pose_type
,
hom_mat3d_to_pose hom_mat3d_to_pose HomMat3dToPose HomMat3dToPose HomMat3dToPose hom_mat3d_to_pose
,
pose_to_hom_mat3d pose_to_hom_mat3d PoseToHomMat3d PoseToHomMat3d PoseToHomMat3d pose_to_hom_mat3d
,
write_pose write_pose WritePose WritePose WritePose write_pose
,
read_pose read_pose ReadPose ReadPose ReadPose read_pose
Module
Foundation