get_prep_info_class_svmT_get_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm (Operator)
Name
get_prep_info_class_svmT_get_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
— Compute the information content of the preprocessed feature vectors
of a support vector machine
Signature
def get_prep_info_class_svm(svmhandle: HHandle, preprocessing: str) -> Tuple[Sequence[float], Sequence[float]]
Description
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
computes the information content of
the training vectors that have been transformed with the
preprocessing given by PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
.
PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
can be set to 'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components"
or 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates". The preprocessing methods are
described with create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
. The information content is
derived from the variations of the transformed components of the
feature vector, i.e., it is computed solely based on the training
data, independent of any error rate on the training data. The
information content is computed for all relevant components of the
transformed feature vectors (NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features
for
'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components" and min(NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes
- 1,
NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features
) for 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates", see
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
), and is returned in
InformationContInformationContInformationContInformationContinformationContinformation_cont
as a number between 0 and 1. To convert
the information content into a percentage, it simply needs to be
multiplied by 100. The cumulative information content of the first
n components is returned in the n-th component of
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
, i.e., CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
contains the sums of the first n elements of
InformationContInformationContInformationContInformationContinformationContinformation_cont
. To use get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
, a
sufficient number of samples must be added to the support vector
machine (SVM) given by SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle
by using
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm
or read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
.
InformationContInformationContInformationContInformationContinformationContinformation_cont
and CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
can be used
to decide how many components of the transformed feature vectors
contain relevant information. An often used criterion is to require
that the transformed data must represent x% (e.g., 90%) of the
data. This can be decided easily from the first value of
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
that lies above x%. The number thus
obtained can be used as the value for NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in a
new call to create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
. The call to
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
already requires the creation of an
SVM, and hence the setting of NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
to an initial value. However, when
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
is called, it is typically not known
how many components are relevant, and hence how to set
NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
in this call. Therefore, the following
two-step approach should typically be used to select
NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
: In a first step, an SVM with the maximum
number for NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
is created (NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features
for 'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components" and min(NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes
-
1, NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features
) for 'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates"). Then,
the training samples are added to the SVM and are saved in a file
using write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm
. Subsequently,
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
is used to determine the information
content of the components, and with this NumComponentsNumComponentsNumComponentsNumComponentsnumComponentsnum_components
.
After this, a new SVM with the desired number of components is
created, and the training samples are read with
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
. Finally, the SVM is trained with
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm
.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle
(input_control) class_svm →
HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM handle.
PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
(input_control) string →
HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Type of preprocessing used to transform the
feature vectors.
Default:
'principal_components'
"principal_components"
"principal_components"
"principal_components"
"principal_components"
"principal_components"
List of values:
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates", 'principal_components'"principal_components""principal_components""principal_components""principal_components""principal_components"
InformationContInformationContInformationContInformationContinformationContinformation_cont
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Relative information content of the transformed
feature vectors.
CumInformationContCumInformationContCumInformationContCumInformationContcumInformationContcum_information_cont
(output_control) real-array →
HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Cumulative information content of the transformed
feature vectors.
Example (HDevelop)
* Create the initial SVM
create_class_svm (NumFeatures, 'rbf', 0.01, 0.01, NumClasses,\
'one-versus-all', 'normalization', NumFeatures,\
SVMHandle)
* Generate and add the training data
for J := 0 to NumData-1 by 1
* Generate training features and classes
* Data = [...]
* Class = ...
add_sample_class_svm (SVMHandle, Data, Class)
endfor
write_samples_class_svm (SVMHandle, 'samples.mtf')
* Compute the information content of the transformed features
get_prep_info_class_svm (SVMHandle, 'principal_components',\
InformationCont, CumInformationCont)
* Determine NumComp by inspecting InformationCont and CumInformationCont
* NumComp = [...]
* Create the actual SVM
create_class_svm (NumFeatures, 'rbf', 0.01, 0.01, NumClasses, \
'one-versus-all', 'principal_components', \
NumComp, SVMHandle)
* Train the SVM
read_samples_class_svm (SVMHandle, 'samples.mtf')
train_class_svm (SVMHandle, 0.001, 'default')
write_class_svm (SVMHandle, 'classifier.svm')
Result
If the parameters are valid the operator
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
returns the value 2 (
H_MSG_TRUE)
. If
necessary, an exception is raised.
get_prep_info_class_svmget_prep_info_class_svmGetPrepInfoClassSvmGetPrepInfoClassSvmGetPrepInfoClassSvmget_prep_info_class_svm
may return the error 9211 (Matrix is
not positive definite) if PreprocessingPreprocessingPreprocessingPreprocessingpreprocessingpreprocessing
=
'canonical_variates'"canonical_variates""canonical_variates""canonical_variates""canonical_variates""canonical_variates" is used. This typically indicates
that not enough training samples have been stored for each class.
Possible Predecessors
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm
,
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
Possible Successors
clear_class_svmclear_class_svmClearClassSvmClearClassSvmClearClassSvmclear_class_svm
,
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
References
Christopher M. Bishop: “Neural Networks for Pattern Recognition”;
Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London;
1999.
Module
Foundation