select_sub_feature_class_train_dataT_select_sub_feature_class_train_dataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataselect_sub_feature_class_train_data (Operator)
Name
select_sub_feature_class_train_dataT_select_sub_feature_class_train_dataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataselect_sub_feature_class_train_data
— Select certain features from training data to create
training data containing less features.
Signature
Description
select_sub_feature_class_train_dataselect_sub_feature_class_train_dataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataselect_sub_feature_class_train_data
selects certain features from
the training data in ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle
and returns the subset
in SelectedClassTrainDataHandleSelectedClassTrainDataHandleSelectedClassTrainDataHandleSelectedClassTrainDataHandleselectedClassTrainDataHandleselected_class_train_data_handle
.
The features that should be selected can be chosen by
SubFeatureIndicesSubFeatureIndicesSubFeatureIndicesSubFeatureIndicessubFeatureIndicessub_feature_indices
. If set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data
was not called before, the indices refer to the columns.
If set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data
was called before,
the grouping defined there is relevant for the meaning of the indices. The
entry n
in the list selects then the n
-th feature group.
If set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data
was called with names for
the feature groups, those names can be used instead of the
indices.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Parameters
ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle
(input_control) class_train_data →
HClassTrainData, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the training data.
SubFeatureIndicesSubFeatureIndicesSubFeatureIndicesSubFeatureIndicessubFeatureIndicessub_feature_indices
(input_control) number-array →
HTupleSequence[Union[int, str]]HTupleHtuple (integer / string) (int / long / string) (Hlong / HString) (Hlong / char*)
Indices or names to select the subfeatures or
columns.
SelectedClassTrainDataHandleSelectedClassTrainDataHandleSelectedClassTrainDataHandleSelectedClassTrainDataHandleselectedClassTrainDataHandleselected_class_train_data_handle
(output_control) class_train_data →
HClassTrainData, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the reduced training data.
Example (HDevelop)
* Find out which of the two features distinguishes two Classes
NameFeature1 := 'Good Feature'
NameFeature2 := 'Bad Feature'
LengthFeature1 := 3
LengthFeature2 := 2
* Create training data
create_class_train_data (LengthFeature1+LengthFeature2,\
ClassTrainDataHandle)
* Define the features which are in the training data
set_feature_lengths_class_train_data (ClassTrainDataHandle, [LengthFeature1,\
LengthFeature2], [NameFeature1, NameFeature2])
* Add training data
* |Feat1| |Feat2|
add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 2,1 ], 0)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 2,1 ], 1)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 3,4 ], 0)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 3,4 ], 1)
* Add more data
* ...
* Select one of the features
select_sub_feature_class_train_data (ClassTrainDataHandle, NameFeature1, \
SelectedClassTrainDataHandle)
* Add training data to a classifier
create_class_knn (LengthFeature1, KNNHandle)
add_class_train_data_knn (KNNHandle, SelectedClassTrainDataHandle)
train_class_knn (KNNHandle, [], [])
* Use the classifier
* ...
Result
If the parameters are valid, the operator
select_sub_feature_class_train_dataselect_sub_feature_class_train_dataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataSelectSubFeatureClassTrainDataselect_sub_feature_class_train_data
returns the value 2 (
H_MSG_TRUE)
. If necessary, an exception is raised.
Possible Predecessors
create_class_train_datacreate_class_train_dataCreateClassTrainDataCreateClassTrainDataCreateClassTrainDatacreate_class_train_data
,
add_sample_class_train_dataadd_sample_class_train_dataAddSampleClassTrainDataAddSampleClassTrainDataAddSampleClassTrainDataadd_sample_class_train_data
,
set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data
Possible Successors
add_class_train_data_gmmadd_class_train_data_gmmAddClassTrainDataGmmAddClassTrainDataGmmAddClassTrainDataGmmadd_class_train_data_gmm
,
add_class_train_data_mlpadd_class_train_data_mlpAddClassTrainDataMlpAddClassTrainDataMlpAddClassTrainDataMlpadd_class_train_data_mlp
,
add_class_train_data_svmadd_class_train_data_svmAddClassTrainDataSvmAddClassTrainDataSvmAddClassTrainDataSvmadd_class_train_data_svm
,
add_class_train_data_knnadd_class_train_data_knnAddClassTrainDataKnnAddClassTrainDataKnnAddClassTrainDataKnnadd_class_train_data_knn
Module
Foundation