generalized_eigenvalues_symmetric_matrix T_generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix (Operator)
Name
generalized_eigenvalues_symmetric_matrix T_generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix
— Compute the generalized eigenvalues and optionally generalized
eigenvectors of symmetric input matrices.
Signature
void GeneralizedEigenvaluesSymmetricMatrix (const HTuple& MatrixAID , const HTuple& MatrixBID , const HTuple& ComputeEigenvectors , HTuple* EigenvaluesID , HTuple* EigenvectorsID )
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const HString& ComputeEigenvectors , HMatrix* EigenvectorsID ) const
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const char* ComputeEigenvectors , HMatrix* EigenvectorsID ) const
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const wchar_t* ComputeEigenvectors , HMatrix* EigenvectorsID ) const
(
Windows only)
Description
The operator generalized_eigenvalues_symmetric_matrix generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix
computes all generalized eigenvalues and, optionally, generalized
eigenvectors of the symmetric matrix MatrixA
and the
symmetric positive definite matrix MatrixB
. Both
matrices must have identical dimensions. The matrices are
defined by the matrix handles MatrixAID MatrixAID MatrixAID matrixAID matrix_aid
and
MatrixBID MatrixBID MatrixBID matrixBID matrix_bid
. On output, a new matrix Eigenvalues
with the generalized eigenvalues in ascending order and,
optionally, a new matrix
Eigenvectors
with the generalized eigenvectors is
created. Each jth column of the matrix Eigenvectors
contains the related eigenvector to the jth eigenvalue. The
operator returns the matrix handles EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id
and
EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id
of the matrices Eigenvalues
and
Eigenvectors
. Access to the elements of the matrices is
possible, e.g., with the operator get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix get_full_matrix
or
get_sub_matrix get_sub_matrix GetSubMatrix GetSubMatrix get_sub_matrix
.
The computation of generalized eigenvectors can be selected via
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
= 'true' "true" "true" "true" "true" . The formula for
the calculation of the result is
with
representing the
th eigenvalue and
represents the corresponding eigenvector.
If ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
= 'false' "false" "false" "false" "false" , no generalized
eigenvectors are computed. For this, the matrix handle
EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id
is invalid.
Example:
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
= 'true' "true" "true" "true" "true"
Attention
The upper triangular parts of the input matrices MatrixA
and MatrixB
must contain the relevant information of the
matrices. The strictly lower triangular parts of the matrices are
not referenced. If the referenced parts of the input matrices
MatrixA
or MatrixB
are not of the specified
type, an exception is raised.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
MatrixAID MatrixAID MatrixAID matrixAID matrix_aid
(input_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle of the symmetric input matrix A.
MatrixBID MatrixBID MatrixBID matrixBID matrix_bid
(input_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle of the symmetric positive
definite input matrix B.
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Computation of the eigenvectors.
Default:
'false'
"false"
"false"
"false"
"false"
List of values:
'false' "false" "false" "false" "false" , 'true' "true" "true" "true" "true"
EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id
(output_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvalues.
EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id
(output_control) matrix →
HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvectors.
Result
If the parameters are valid, the operator
generalized_eigenvalues_symmetric_matrix generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix
returns the value
2 (
H_MSG_TRUE )
. If necessary, an exception is raised.
Possible Predecessors
create_matrix create_matrix CreateMatrix CreateMatrix create_matrix
Possible Successors
get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix get_full_matrix
,
get_value_matrix get_value_matrix GetValueMatrix GetValueMatrix get_value_matrix
Alternatives
generalized_eigenvalues_general_matrix generalized_eigenvalues_general_matrix GeneralizedEigenvaluesGeneralMatrix GeneralizedEigenvaluesGeneralMatrix generalized_eigenvalues_general_matrix
See also
eigenvalues_symmetric_matrix eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix
,
eigenvalues_general_matrix eigenvalues_general_matrix EigenvaluesGeneralMatrix EigenvaluesGeneralMatrix eigenvalues_general_matrix
References
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
Module
Foundation