add_sample_class_svmT_add_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm (Operator)
Name
add_sample_class_svmT_add_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm — Add a training sample to the training data of a support vector
machine.
Signature
Description
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm adds a training sample to the support
vector machine (SVM) given by SVMHandleSVMHandleSVMHandleSVMHandlesvmhandle. The training
sample is given by FeaturesFeaturesFeaturesfeaturesfeatures and ClassClassClassclassValclass.
FeaturesFeaturesFeaturesfeaturesfeatures is the feature vector of the sample, and
consequently must be a real vector of length NumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features,
as specified in create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm. ClassClassClassclassValclass is the
target of the sample, which must be in the range of 0 to
NumClassesNumClassesNumClassesnumClassesnum_classes-1 (see create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm). In the special
case of 'novelty-detection'"novelty-detection""novelty-detection""novelty-detection""novelty-detection" the class is to be set to 0 as
only one class is assumed.
Before the SVM can be trained with
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm, training samples must be added to the
SVM with add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm. The usage of support vectors
of an already trained SVM as training samples is described in
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm.
The number of currently stored training samples can be queried with
get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm. Stored training samples can be
read out again with get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm.
Normally, it is useful to save the training samples in a file with
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm to facilitate reusing the samples
and to facilitate that, if necessary, new training samples can be
added to the data set, and hence to facilitate that a newly
created SVM can be trained with the extended data set.
Execution Information
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
This operator modifies the state of the following input parameter:
During execution of this operator, access to the value of this parameter must be synchronized if it is used across multiple threads.
Parameters
SVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (input_control, state is modified) class_svm → HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM handle.
FeaturesFeaturesFeaturesfeaturesfeatures (input_control) real-array → HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Feature vector of the training sample to be stored.
ClassClassClassclassValclass (input_control) number → HTupleUnion[int, float]HTupleHtuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Class of the training sample to be stored.
Result
If the parameters are valid the operator
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm returns the value 2 (
H_MSG_TRUE)
. If necessary,
an exception is raised.
Possible Predecessors
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmcreate_class_svm
Possible Successors
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmtrain_class_svm,
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm,
get_sample_num_class_svmget_sample_num_class_svmGetSampleNumClassSvmGetSampleNumClassSvmget_sample_num_class_svm,
get_sample_class_svmget_sample_class_svmGetSampleClassSvmGetSampleClassSvmget_sample_class_svm
Alternatives
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
See also
clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm,
get_support_vector_class_svmget_support_vector_class_svmGetSupportVectorClassSvmGetSupportVectorClassSvmget_support_vector_class_svm
Module
Foundation