cluster_model_componentsT_cluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components (Operator)

Name

cluster_model_componentsT_cluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components — Adopt new parameters that are used to create the model components into the training result.

Warning

cluster_model_componentscluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components is obsolete and is only provided for reasons of backward compatibility. The operator will be removed with HALCON 26.11.

Signature

cluster_model_components(TrainingImages : ModelComponents : ComponentTrainingID, AmbiguityCriterion, MaxContourOverlap, ClusterThreshold : )

Herror T_cluster_model_components(const Hobject TrainingImages, Hobject* ModelComponents, const Htuple ComponentTrainingID, const Htuple AmbiguityCriterion, const Htuple MaxContourOverlap, const Htuple ClusterThreshold)

void ClusterModelComponents(const HObject& TrainingImages, HObject* ModelComponents, const HTuple& ComponentTrainingID, const HTuple& AmbiguityCriterion, const HTuple& MaxContourOverlap, const HTuple& ClusterThreshold)

HRegion HComponentTraining::ClusterModelComponents(const HImage& TrainingImages, const HString& AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const

HRegion HComponentTraining::ClusterModelComponents(const HImage& TrainingImages, const char* AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const

HRegion HComponentTraining::ClusterModelComponents(const HImage& TrainingImages, const wchar_t* AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const   ( Windows only)

HRegion HImage::ClusterModelComponents(const HComponentTraining& ComponentTrainingID, const HString& AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const

HRegion HImage::ClusterModelComponents(const HComponentTraining& ComponentTrainingID, const char* AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const

HRegion HImage::ClusterModelComponents(const HComponentTraining& ComponentTrainingID, const wchar_t* AmbiguityCriterion, double MaxContourOverlap, double ClusterThreshold) const   ( Windows only)

static void HOperatorSet.ClusterModelComponents(HObject trainingImages, out HObject modelComponents, HTuple componentTrainingID, HTuple ambiguityCriterion, HTuple maxContourOverlap, HTuple clusterThreshold)

HRegion HComponentTraining.ClusterModelComponents(HImage trainingImages, string ambiguityCriterion, double maxContourOverlap, double clusterThreshold)

HRegion HImage.ClusterModelComponents(HComponentTraining componentTrainingID, string ambiguityCriterion, double maxContourOverlap, double clusterThreshold)

def cluster_model_components(training_images: HObject, component_training_id: HHandle, ambiguity_criterion: str, max_contour_overlap: float, cluster_threshold: float) -> HObject

Description

With cluster_model_componentscluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components you can modify parameters after a first training has been performed using train_model_componentstrain_model_componentsTrainModelComponentsTrainModelComponentstrain_model_components. cluster_model_componentscluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components sets the criterion AmbiguityCriterionAmbiguityCriterionAmbiguityCriterionambiguityCriterionambiguity_criterion that is used to solve the ambiguities, the maximum contour overlap MaxContourOverlapMaxContourOverlapMaxContourOverlapmaxContourOverlapmax_contour_overlap, and the cluster threshold of the training result ComponentTrainingIDComponentTrainingIDComponentTrainingIDcomponentTrainingIDcomponent_training_id to the specified values. A detailed description of these parameters can be found in the documentation of train_model_componentstrain_model_componentsTrainModelComponentsTrainModelComponentstrain_model_components. By modifying these parameters, the way in which the initial components are merged into rigid model components changes. For example, the greater the cluster threshold is chosen, the fewer initial components are merged. You can select suitable parameter values interactively by repeatedly calling inspect_clustered_componentsinspect_clustered_componentsInspectClusteredComponentsInspectClusteredComponentsinspect_clustered_components with different parameter values and then setting the chosen values by using get_training_componentsget_training_componentsGetTrainingComponentsGetTrainingComponentsget_training_components.

The rigid model components are returned in ModelComponentsModelComponentsModelComponentsmodelComponentsmodel_components. In order to receive reasonable results, it is essential that the same training images that were used to perform the training with train_model_componentstrain_model_componentsTrainModelComponentsTrainModelComponentstrain_model_components are passed in TrainingImagesTrainingImagesTrainingImagestrainingImagestraining_images. The pose of the newly clustered components within the training images is determined using the shape-based matching. As in train_model_componentstrain_model_componentsTrainModelComponentsTrainModelComponentstrain_model_components, one can decide whether the shape models should be pregenerated by using set_system('pregenerate_shape_models',...)set_system("pregenerate_shape_models",...)SetSystem("pregenerate_shape_models",...)SetSystem("pregenerate_shape_models",...)set_system("pregenerate_shape_models",...). Note that, if for a certain pyramid level the model touches the image border, it might not be found even if it lies completely within the original image. set_system('border_shape_models',...)set_system("border_shape_models",...)SetSystem("border_shape_models",...)SetSystem("border_shape_models",...)set_system("border_shape_models",...) can be used to determine whether the models must lie completely within the training images or whether they can extend partially beyond the image border.

Execution Information

Parameters

TrainingImagesTrainingImagesTrainingImagestrainingImagestraining_images (input_object)  (multichannel-)image(-array) objectHImageHObjectHObjectHobject (byte / uint2)

Training images that were used for training the model components.

ModelComponentsModelComponentsModelComponentsmodelComponentsmodel_components (output_object)  region(-array) objectHRegionHObjectHObjectHobject *

Contour regions of rigid model components.

ComponentTrainingIDComponentTrainingIDComponentTrainingIDcomponentTrainingIDcomponent_training_id (input_control)  component_training HComponentTraining, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the training result.

AmbiguityCriterionAmbiguityCriterionAmbiguityCriterionambiguityCriterionambiguity_criterion (input_control)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Criterion for solving the ambiguities.

Default: 'rigidity' "rigidity" "rigidity" "rigidity" "rigidity"

List of values: 'distance'"distance""distance""distance""distance", 'distance_orientation'"distance_orientation""distance_orientation""distance_orientation""distance_orientation", 'orientation'"orientation""orientation""orientation""orientation", 'rigidity'"rigidity""rigidity""rigidity""rigidity"

MaxContourOverlapMaxContourOverlapMaxContourOverlapmaxContourOverlapmax_contour_overlap (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Maximum contour overlap of the found initial components.

Default: 0.2

Suggested values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Minimum increment: 0.01

Recommended increment: 0.05

Restriction: 0 <= MaxContourOverlap && MaxContourOverlap <= 1

ClusterThresholdClusterThresholdClusterThresholdclusterThresholdcluster_threshold (input_control)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Threshold for clustering the initial components.

Default: 0.5

Suggested values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Restriction: 0 <= ClusterThreshold && ClusterThreshold <= 1

Result

If the parameter values are correct, the operator cluster_model_componentscluster_model_componentsClusterModelComponentsClusterModelComponentscluster_model_components returns the value 2 ( H_MSG_TRUE) . If the input is empty (no input images are available) the behavior can be set via set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>). If necessary, an exception is raised.

Module

Matching