trans_from_rgb
— Transform an image from the RGB color space to an arbitrary color space.
trans_from_rgb(ImageRed, ImageGreen, ImageBlue : ImageResult1, ImageResult2, ImageResult3 : ColorSpace : )
trans_from_rgb
transforms an image from the RGB color
space to an arbitrary color space (ColorSpace
).
The three channels of the image are passed as three separate images on
input and output.
The operator trans_from_rgb
supports the image types
byte
, uint2
, int4
, and real
.
In the case of real
images, all values should lay within
0 and 1. If not, the results of the transformation may not be reasonable.
Certain scalings are performed accordingly to the image type:
Considering byte
and uint2
images, the domain of
color space values is generally mapped to the full domain of
[0..255] or [0..65535], respectively.
Because of this, the origin of signed values (e.g., CIELab)
may not be at the center of the domain.
Hue values are represented by angles of [0..2[ and are coded for the particular image types differently:
byte
-images map the angle domain to [0..255].
uint2
/int4
-images are coded in
minutes of arc [0..21600[, except for the transformations
'cielchab' and 'cielchuv' for
int4
-images, where they are coded in
seconds of arc [0..1296000[.
real
-images are coded in radians
[0..2[, except for the transformations
'cielchab' and 'cielchuv' , where the
standards ISO 11664-4:2008 and ISO 11664-5:2009 require the
hue to be specified in degrees.
Saturation values are represented by percentages of [0..100] and are coded differently for the particular image type:
byte
-images map the saturation values
to [0..255].
uint2
/int4
map the
saturation values to [0..10000].
real
-images map the saturation values
to [0..1].
Supported are the transformations listed below. Note, all domains are based on RGB values scaled to [0; 1]. To obtain the domain of a certain image type, they must be scaled accordingly with the value range. Due to different precision the values obtained using the given equations may slightly differ from the values returned by the operator.
Value range: , ,
Note, this implies that , , and are not independent of each other.
Value range: , ,
Value range: , ,
The primary colors used correspond to sRGB respectively CIE Rec. 709. D65 is used as white point.
Value range: , ,
Min := min([R, G, B]) Max := max([R, G, B]) L := (Min + Max) / 2 if (Max == Min) H := 0 S := 0 else if (L > 0.5) S := (Max - Min) / (2 - Max - Min) else S := (Max - Min) / (Max + Min) endif if (R == Max) H := ((G - B) / (Max - Min)) * rad(60) elseif (G == Max) H := (2 + (B - R) / (Max - Min)) * rad(60) elseif (B == Max) H := (4 + (R - G) / (Max - Min)) * rad(60) endif endif
Value range: , ,
Min := min([R, G, B]) Max := max([R, G, B]) V := Max if (Max == Min) S := 0 H := 0 else S := (Max - Min) / Max if (R == Max) H := ((G - B) / (Max - Min)) * rad(60) elseif (G == Max) H := (2 + (B - R) / (Max - Min)) * rad(60) elseif (B == Max) H := (4 + (R - G) / (Max - Min)) * rad(60) endif endif
Min := min([R, G, B]) Max := max([R, G, B]) I := (R + G + B) / 3 if (I == 0) H := 0 S := 1 else S := 1 - Min / I if (S == 0) H := 0 else X := (R + R - G - B) / 2 Y := (R - G) * (R - G) + (R - B) * (G - B) Z := sqrt(Y) if (Z == 0) H := 0 else H := acos(X / Z) endif if (B > G) H := rad(360) - H endif endif endif
where
Black point B: (, , ) = (0, 0, 0)
White point W (according to image type):
byte
: (, , ) =
(255, 255, 255)
uint2
: (, , ) =
(, ,
)
int4
: (, , ) =
(, ,
)
real
: (, , ) =
(1.0, 1.0, 1.0)
Value range:
,
,
(byte
and uint2
:
scaled to the maximum gray value.
int4
:
is scaled to the maximum gray value,
and are scaled to the minimum gray value,
such that the origin stays at 0.)
where
lies
between 0° and 90° if and are both positive,
between 90° and 180° if is negative and is positive,
between 180° and 270° if and are both negative, and
between 270° and 360° if is positive and is negative.
Black point B: (, , ) = (0, 0, 0)
White point W (according to image type):
byte
: (, , ) =
(255, 255, 255)
uint2
: (, , ) =
(, ,
)
int4
: (, , ) =
(, ,
)
real
: (, , ) =
(1.0, 1.0, 1.0)
Value range:
,
,
(byte
:
scaled to the maximum gray value.
uint2
:
and are scaled to the maximum gray value,
is given in minutes of arc.
int4
:
and are scaled to the maximum gray value,
is given in seconds of arc.)
where
Black point B: (, , ) = (0, 0, 0)
White point W (according to image type):
byte
: (, , ) =
(255, 255, 255)
uint2
: (, , ) =
(, ,
)
int4
: (, , ) =
(, ,
)
real
: (, , ) =
(1.0, 1.0, 1.0)
Value range:
,
,
(byte
and uint2
:
scaled to the maximum gray value.
int4
:
is scaled to the maximum gray value,
and are scaled to the minimum gray value,
such that the origin stays at 0.)
where
Black point B: (, , ) = (0, 0, 0)
White point W (according to image type):
byte
: (, , ) =
(255, 255, 255)
uint2
: (, , ) =
(, ,
)
int4
: (, , ) =
(, ,
)
real
: (, , ) =
(1.0, 1.0, 1.0)
Value range:
,
,
(byte
:
scaled to the maximum gray value.
uint2
:
and are scaled to the maximum gray value,
is given in minutes of arc.
int4
:
and are scaled to the maximum gray value,
is given in seconds of arc.)
Value range: , ,
Value range: , ,
Value range: , ,
Value range: , ,
This conceptually is a transformation from RGB to CIE XYZ (see 'ciexyz' above) followed by a transformation from CIE XYZ to LMS.
Value range: , ,
As the calculations are made with a different numerical precision, the
OpenCL implementation of the cielab transformation for images of type int4
is slightly less accurate than the pure C version.
ImageRed
(input_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Input image (red channel).
ImageGreen
(input_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Input image (green channel).
ImageBlue
(input_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Input image (blue channel).
ImageResult1
(output_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Color-transformed output image (channel 1).
ImageResult2
(output_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Color-transformed output image (channel 1).
ImageResult3
(output_object) singlechannelimage(-array) →
object (byte / uint2 / int4 / real)
Color-transformed output image (channel 1).
ColorSpace
(input_control) string →
(string)
Color space of the output image.
Default: 'hsv'
List of values: 'argyb' , 'cielab' , 'cielchab' , 'cielchuv' , 'cieluv' , 'ciexyz' , 'ciexyz2' , 'ciexyz3' , 'ciexyz4' , 'hls' , 'hsi' , 'hsv' , 'i1i2i3' , 'ihs' , 'lms' , 'yiq' , 'yuv'
List of values (for compute devices): 'cielab' , 'cielchab' , 'cieluv' , 'cielchuv' , 'hsv' , 'hsi'
* Transformation from rgb to hsv and conversely read_image(Image,'patras') dev_display(Image) decompose3(Image, Image1, Image2, Image3) trans_from_rgb(Image1,Image2,Image3,ImageH,ImageS,ImageV,'hsv') trans_to_rgb(ImageH,ImageS,ImageV,ImageR,ImageG,ImageB,'hsv') compose3(ImageR,ImageG,ImageB,Multichannel) dev_display(Multichannel)
trans_from_rgb
returns 2 (
H_MSG_TRUE)
if all parameters are
correct. If the input is empty the behavior can be set via
set_system(::'no_object_result', <Result>:)
. If
necessary, an exception is raised.
linear_trans_color
,
rgb1_to_gray
,
rgb3_to_gray
ITU-R BT.470-6: “Conventional Television Systems”, 1998.
ISO 11664-4:2008: “Colorimetry --- Part 4: CIE 1976 L*a*b* Colour
Space”, 2008.
ISO 11664-5:2009: “Colorimetry --- Part 5: CIE 1976 L*u*v* Colour
space and u',v' uniform chromaticity scale diagram”, 2009.
Foundation