石鑫华视觉论坛

 找回密码
 注册会员
查看: 3825|回复: 0

[新闻] 红外线与红外光源

[复制链接]
  • TA的每日心情
    擦汗
    10 小时前
  • 签到天数: 3378 天

    连续签到: 5 天

    [LV.Master]2000FPS

    发表于 2015-3-19 14:19:09 | 显示全部楼层 |阅读模式 来自:广东省东莞市 电信

    注册登陆后可查看附件和大图,以及购买相关内容

    您需要 登录 才可以下载或查看,没有账号?注册会员

    x
    红外线与红外光源

    红外线的定义
    红外线(IR)

    是波长介乎微波与可见光之间的电磁波,波长在770纳米至1毫米之间,是波长比红光长的非可见光。覆盖室温下物体所发出的热辐射的波段。透过云雾能力比可见光强。在通讯、探测、医疗、军事等方面有广泛的用途。 俗称红外光。

                                   
    登录/注册后可看大图

    一只狗的红外线照片

    光线与"红外线"的关系

    光线是一种辐射电磁波,其波长分布自300nm(紫外线)到14,000nm(远红外线)。不过以人类的经验而言,“光域”通常指的是肉眼可见的光波域,即是从400nm(紫)到700nm(红)可以被人类眼睛感觉得到的范围,一般称为“可见光域”(Visible)。由于近代科技的发达,人类利用各种“介质”(特殊材质的感应器),把感觉范围从“可见光”部份向两端扩充,最低可达到0.08~0.1nm(X光, 0.8~1Å),最高可达10,000nm(远红外线,热像范围)。

    不同领域的红外线

    物体通常会辐射出跨越不同波长的红外线,但是侦测器的设计通常只能接收感到兴趣的特定频谱宽度以内的辐射。结果是,红外线通常会被区分成不同波长的较小区段。

    CIE分类系统

    国际照明委员会 (CIE)建议将红外线区分为以下三个类别:

    § 红外线-A (IR-A):700纳米-1,400纳米 (0.7微米-1.4微米)
    § 红外线-B (IR-B):1,400纳米-3,000纳米 (1.4微米-3微米)
    § 红外线-C (IR-C):3,000纳米-1毫米 (3微米-1,000微米)
    一般使用者的分类是:
    § 近红外线 (NIR, IR-A DIN):

    波长在0.75-1.4微米,以水的吸收来定义,由于在二氧化硅玻璃中的低衰减率,通常使用在光纤通信中。在这个区域的波长对影像的增强非常敏锐。例如,包括夜视设备,像是夜视镜。

    § 短波长红外线 (SWIR, IR-B DIN):

    1.4-3微米,水的吸收在1,450纳米显著的增加。1,530至1,560纳米是主导远距离通信的主要光谱区域。

    § 中波长红外线 (MWIR, IR-C DIN) 也称为中红外线:

    波长在3-8微米。被动式的红外线追热导向导弹技术在设计上就是使用3-5微米波段的大气窗口来工作,对飞机红外线标识的归航,通常是针对飞机引擎排放的羽流。

    § 长波长红外线 (LWIR, IR-C DIN):

    8-15微米。这是"热成像"的区域,在这个波段的传感器不需要其他的光或外部热源,例如太阳、月球或红外灯,就可以获得完整的热排放量的被动影像。前视性红外线(FLIR)系统使用这个区域的频谱。,有时也会被归类为"远红外线"

    § 远红外线 (FIR):

    15-1,000微米 (参见远红外线雷射)。

    NIR和SWIR有时被称为"反射红外线",而MWIR和LWIR有时被称为"热红外线",这是基于黑体辐射曲线的特性,典型的'热'物体,像是排气管,同样的物体通常在MW的波段会比在LW波段下来得更为明亮。
    ISO 20473分类
    名称缩写波长
    近红外线NIR0.78 - 3 微米
    中红外线MIR3 - 50微米
    远红外线FIR50 – 1,000微米

    天文学分类方案


    天文学家通常将以如下的波段区分红外线的范围:

    名称缩写波长
    近红外线NIR(0.7-1)至5微米
    中红外线MIR5 至 (25-40) 微米
    远红外线FIR(25-40) 至 (200-350) 微米
    这种分类不是很精确,而且和发布的单位有关。这三种区域分别用于观测不同温度的范围,以及不同环境下的空间。
    传感器回应分类方案

    § 近红外线 | (Near Infra-red, NIR)| 700~ 2,000nm | 0.7~2 MICRON

    § 中红外线 | (Middle Infra-red, MIR)| 3,000~ 5,000nm | 3~5 MICRON
    § 远红外线 | (Far Infra-red, FIR)| 8,000~14,000nm | 8~14 MICRON
    红外线的发现

    公元1666年牛顿发现光谱并测量出3,900埃~7,600埃(400nm~700nm)是可见光的波长。1800年4月24日英国伦敦皇家学会(ROYAL SOCIETY)的威廉·赫歇尔发表太阳光在可见光谱的红光之外还有一种不可见的延伸光谱,具有热效应。他所使用的方法很简单,用一支温度计测量经过棱镜分光后的各色光线温度,由紫到红,发现温度逐渐增加,可是当温度计放到红光以外的部份,温度仍持续上升,因而断定有红外线的存在。在紫外线的部份也做同样的测试,但温度并没有增高的反应。紫外线是1801年由RITTER用氯化银(Silver chloride)感光剂所发现的。

    底片所能感应的近红外线波长是肉眼所能看见光线波长的两倍,用底片可以记录到的波长上限是13,500埃,如果再加上其它特殊的设备,则最高可以达到20,000埃,再往上就必须用物理仪器侦测了。

                                   
    登录/注册后可看大图

    部分红外线区域的大气层穿透图

    红外线辐射源区分(Infrared radiation)

    红外线辐射源可区分为四部份:

    1.             白炽发光区(Actinic range):或称“光化反应区”,由白炽物体产生的射线,自可见光域到红外域。如灯泡(钨丝灯,TUNGSTEN FILAMENT LAMP),太阳。
    2.             热体辐射区(Hot-object range):由非白炽物体产生的热射线,如电熨斗及其它的电热器等,平均温度约在400℃左右。
    3.             发热传导区(Calorific range)由滚沸的热水或热蒸汽管产生的热射线。平均温度低于200℃,此区域又称为“非光化反应区”(Non-actinic)。
    4.             温体辐射区(Warm range):由人体、动物或地热等所产生的热射线,平均温度约为40℃左右。
    站在照相与摄影技术的观点来看感光特性:光波的能量与感光材料的敏感度是造成感光最主要的因素。波长愈长,能量愈弱,即红外线的能量要比可见光低,比紫外线更低。但是高能量波所必须面对的另一个难题就是:能量愈高穿透力愈强,无法形成反射波使感光材料撷取影像,例如X光,就必须在被照物体的背后取像。因此,摄影术就必须往长波长的方向——“近红外线”部份发展。以造影为目标的近红外线摄影术,随着化学与电子科技的进展,演化出下列三个方向:
    1.             近红外线底片:以波长700nm~900nm的近红外线为主要感应范围,利用加入特殊染料的乳剂产生光化学反应,使此一波域的光变化转为化学变化形成影像。
    2.             近红外线电子感光材料:以波长700nm~2,000nm的近红外线为主要感应范围,它是利用以硅为主的化合物晶体产生光电反应,形成电子影像。
    3.             中、远红外线热像感应材料:以波长3,000nm~14,000nm的中红外线及远红外线为主要感应范围,利用特殊的感应器及冷却技术,形成电子影像。
    红外光源

    红外光源,一般可应用于传感器、安防、监控、机器视觉等领域。本站所以讲红外光源主要是指应用于机器视觉领域的红外LED光源。使用波长为850nm或940nm的近红外LED颗粒组装成某种形状的机器视觉照明光源,如环形红外光源、条形红外光源、同轴红外光源。

    红外光源因为其有较长的波长,因此其穿透性要强于可见光与紫外光源。因此许多需要应用穿透的光源,都可以考虑使用红外光源,如表面有塑料的特征检测;又因为红外光源不属于可见光,人眼不可见,因此在一些对人眼有刺激的检测场合,其也有一定的优势。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册会员

    本版积分规则

    LabVIEW HALCON图像处理入门教程(第二版)
    石鑫华机器视觉与LabVIEW Vision图像处理PDF+视频教程11种全套
    《LabVIEW Vision函数实例详解》教程-NI Vision所有函数使用方法介绍,基于NI VISION2020,兼容VDM21/22/23/24

    QQ|石鑫华视觉论坛 |网站地图

    GMT+8, 2024-11-15 18:52

    Powered by Discuz! X3.4

    © 2001-2024 Discuz! Team.

    快速回复 返回顶部 返回列表