注册登陆后可查看附件和大图,以及购买相关内容
您需要 登录 才可以下载或查看,没有账号?注册会员
x
马修·查默斯:来自英国布里斯托尔的自由撰稿人,2012年在《科学美国人》杂志上撰文《后希格斯粒子时代》。他表示,发现希格斯粒子之后,要对这种粒子进行更精细的研究,大型强子对撞机(LHC)已无法胜任。现在,科学家提出了4种方案,建造新一代对撞机,提高研究精度,以期发现标准模型之外的物理现象。
希格斯粒子进入死胡同 希格斯玻色子的发现让历史上最精确的科学模型——粒子物理学标准模型得以完整,但是,“一个故事的结束,也是另一个故事的开始”,这也预示着新问题即将出现。
1964年2月,披头士乐队心中时刻想的就是让美国为之倾倒,而彼时彼刻,一些强大的物质也在理论物理学家穆雷·盖尔曼的大脑中盘旋。盖尔曼思考的问题是:组成物质的原子和中子本身是否也由更小的物质组成呢?他将这种更小的物质命名为“夸克”。“夸克”一词是穆雷·盖尔曼改编自爱尔兰作家詹姆斯·乔伊斯的小说《芬尼根守灵夜》(Finnegans Wake)中的诗句:“向麦克老大三呼夸克。” 取这一名字仅仅因为盖尔曼喜欢这个单词的发音,就像夸脱一样。
那时,物理学对变革理念的渴求就像困在沙漠中的人对绿洲的渴求一样强烈。科学家们在宇宙射线中发现了几十个奇异的新粒子,这似乎不合情理也毫无缘由。盖尔曼发明的夸克使质子、中子和所有这些新粒子可以被描述为两个或者三个更基本的粒子的组合。
对于大多数物理学家来说,这一想法有点太过于超前了。新粒子打破了既定的规则,因为其拥有+2/3、-1/3这样的电荷,而且,科学家们或许也从来不会看到这些粒子“独自起舞”。情况为什么会变得这么奇妙呢?
为什么就不能如此呢?现就职于墨西哥州桑塔费研究所的盖尔曼反驳道:“每个人都在说,这也不可能,那也不可能,但或许本来就毫无道理,或许自然就是如此奇妙。”结果也表明正是如此。现在,夸克已经成为所有科学里最禁得住检验的理论模型——粒子物理学标准模型的基础。在40年的岁月中,标准模型展示出了不可思议的能力,一次次地将理论学家们的梦想变成无可辩驳的事实。2012年7月,欧洲核子研究中心(CERN)的大型强子对撞机(LHC)实验组宣称发现了希格斯玻色子,这只是标准模型最新、最惊人、最引人瞩目的一次展示而已。
尽管科学家们已经取得了如此惊人的成就,但是,“盛极而衰”“物理学已日薄西山”等言语却不绝于耳。有了希格斯玻色子,明显不完整的标准模型变得更加完整完满,但是,这并不表示该模型没有瑕疵,而实验也无力再提供线索,供科学家们创建出更好的模型来弥补其不足。历史再次重演,粒子物理学理论再次呼唤全新的变革。
美国得克萨斯大学奥斯汀分校的理论学家斯蒂芬·温伯格于1974年提出了“标准模型”。温伯格表示:我并不希望这一术语成为教条,我希望它成为交流和实验的基础,让科学家们借此获得一些证据,证明标准模型是错的。标准模型的基本要义在一张明信片上就能表述清楚:6个夸克成双成对,构成除了质量以外其他一切都一模一样的三“代”;诸如电子和中子等6个“轻子”也采用同样的方式排列;另外还有一小撮玻色子在夸克和轻子之间传递自然界最基本的作用力。
关于这些粒子最重要的事情是,它们在本质上都是量子粒子。量子理论源于20世纪初非常关键的发现,这些发现表明,原子释放和吸收的辐射之所有具有这样的波长,只能够过假定能量被打包成不连续的小份或者“量子”来解释。顺着这条思路,我们就能推导出一个怪异的二象性,在最小的尺度上,粒子是波,波也是粒子。这些“身份”含混不清的波—粒子的运动并不遵从牛顿经典力学,而是在抽象的数学空间中的奇异规则下跳着概率的舞蹈。
到了上世纪20年代中期,量子力学大体已经成型,也经受住了所有实验的考验。但是,在上世纪20年代晚期,物理学天才、获得诺贝尔奖的最年轻的理论物理学家保罗·狄拉克和其他人开始探究将量子力学和爱因斯坦的广义相对论关联起来,这一举动在描述以接近光速运动的粒子方面迈出了关键的一步,自此,科学研究进入另外一番新天地。
1928年,狄拉克提出了一个电子运动的相对论性量子力学方程,即狄拉克方程,该方程拥有不止一个解,这似乎预示着存在着这样一种粒子,其属性和电子类似,但是,电荷相反。五年后,科学家们在宇宙射线中发现了这种“正电子”。理论学家们也顺势而动,提出了“反物质”这一概念。
量子场论作为标准模型的理论基础,也是上述逻辑的集大成者。用场来传递力这一想法可以追溯到19世纪英国物理学家、化学家迈克尔·法拉第,但是,量子场的数学结构给这些量子场赋予了一些奇怪的属性:它们可以从空无一物的真空中制造出粒子,再让其湮灭于无形。因此,根据量子电动力学理论的观点,两个电子之所以会相互排斥,是因为一个光量子(光子)“作祟”,光量子是电磁场的量子粒子,不知所起而且会从一个电子传到另一个电子那儿。无数个这样的“虚拟”粒子不断出没,会轻微改变经典电子或者说“裸”电子的属性。自从上世纪40年代以来,很多实验都证实了这种变化,而且,精确程度令人瞠目结舌。
量子理论将其他力囊括其中也颇费了一番功夫,花费了更长时间。在辐射衰变中将一种粒子变成另一种粒子的弱核力很长时间以来都被难以控制的无穷大所困扰,这就使得除了最简单的一些效应以外,其他计算都陷入无望。时间继续向前推进,到了上世纪60年代,温伯格等人终于找到出路,将弱核力与电磁力统一成弱电力,这种弱电力只在能量极高的环境(比如早期宇宙)下才会“现身”。
正如狄拉克方程预言了反物质的存在一样,这一理论也预示了可能存在一些迄今还没有被看到的粒子:大质量的W和Z玻色子——其主要作用是传递目前已经成弱电力中分离出来的短程弱核力以及希格斯玻色子。希格斯玻色子一定要存在,才能确保W和Z玻色子在统一的弱电力被分解成电磁力和弱核力的所谓“破缺”过程中获得质量,从而将弱核力限制在原子距离范围内;然而,与此同时,传递电磁力的光子则不会获得质量,这就使得它们能够自由自在地在宇宙中穿梭驰骋。
与此同时,强核力(让原子核紧紧依附在一起的作用力)的量子场理论也上演了一出“咸鱼翻身”的好戏,用该理论的联合创立者、美国加州大学圣巴巴拉分校的戴维·格罗斯的话来说,就是“从闹剧到胜利”。量子色动力学也是盖尔曼创造出的一个术语,量子色动力学通过将夸克之间的相互作用描述为它们不断交换8种携带“色荷”的胶子,最终让夸克名声大噪;该理论还展示了夸克非常独特的一点:那就是两个夸克距离越远,它们之间的作用力就越强。格罗斯说:“该理论不但揭示了为什么质子看上去由夸克构成,而且也解释了为什么这些夸克从来不会被拉出质子的管辖疆域。”
上述基本上就是标准模型的全部故事了。到了1973年,披头士乐队的成员们已经分道扬镳,而在接下来的一段时期内,科学家们做出了一连串激动人心的发明,使得标准模型最终成型,其中包括约束所有粒子的行为的弱电统一理论以及仅仅对夸克和胶子起作用的量子色动力学。标准模型不仅充满智慧而且非常优美。标准模型的方程式具有极端完美的对称性,不仅描述了自然界中各种力的本质和特征,也告诉物理学家们应该前往何处寻找什么新粒子。
果不其然,新粒子在粒子对撞机的数据中逐个“显山露水”,这让理论学家们狂喜不已。上世纪60年代末,科学家们就已经在实验室获得了三个夸克存在的证据,但是,直到上世纪70年代末,美国物理学家们才推测出第四和第五种夸克粒子的存在,并最终在1995年推测出立刻第6个种“顶”夸克粒子的存在。
到了2000年,最后一个轻子τ中微子才被科学家们收入囊中。在这场发现新粒子的战争的另一端,德国汉堡城外的德国电子同步加速器研究所(DESY)的科学家们于1979年捕获了胶子;欧洲核子研究中心的科学家们在1983年抓住了W和Z玻色子。当时光机器前进到2012年时,欧洲核子研究中心的科学家们才众望所归地发现了标准模型预测的最著名的也是最后一种粒子——希格斯玻色子。
对于温伯格来说,标准模型的胜利之路显得非常特别。他说:“你在办公桌上用一些数学公式和概念来打发时间,然后发现,在花费了数十亿美元之后,实验物理学家们证实了这些想法,难道还有比这更加特别的事情吗?”既然如此,但是,为什么他和其他科学家并没有想象中得那么高兴呢? (中国科技网)
|