Name
projective_trans_hom_point_3dT_projective_trans_hom_point_3dProjectiveTransHomPoint3dProjectiveTransHomPoint3d — Project a homogeneous 3D point using a projective transformation
matrix.
Herror T_projective_trans_hom_point_3d(const Htuple HomMat3D, const Htuple Px, const Htuple Py, const Htuple Pz, const Htuple Pw, Htuple* Qx, Htuple* Qy, Htuple* Qz, Htuple* Qw)
void ProjectiveTransHomPoint3d(const HTuple& HomMat3D, const HTuple& Px, const HTuple& Py, const HTuple& Pz, const HTuple& Pw, HTuple* Qx, HTuple* Qy, HTuple* Qz, HTuple* Qw)
HTuple HHomMat3D::ProjectiveTransHomPoint3d(const HTuple& Px, const HTuple& Py, const HTuple& Pz, const HTuple& Pw, HTuple* Qy, HTuple* Qz, HTuple* Qw) const
double HHomMat3D::ProjectiveTransHomPoint3d(double Px, double Py, double Pz, double Pw, double* Qy, double* Qz, double* Qw) const
static void HOperatorSet.ProjectiveTransHomPoint3d(HTuple homMat3D, HTuple px, HTuple py, HTuple pz, HTuple pw, out HTuple qx, out HTuple qy, out HTuple qz, out HTuple qw)
HTuple HHomMat3D.ProjectiveTransHomPoint3d(HTuple px, HTuple py, HTuple pz, HTuple pw, out HTuple qy, out HTuple qz, out HTuple qw)
double HHomMat3D.ProjectiveTransHomPoint3d(double px, double py, double pz, double pw, out double qy, out double qz, out double qw)
projective_trans_hom_point_3dprojective_trans_hom_point_3dProjectiveTransHomPoint3dProjectiveTransHomPoint3dProjectiveTransHomPoint3d applies the homogeneous
projective transformation matrix HomMat3DHomMat3DHomMat3DHomMat3DhomMat3D to all
homogeneous input points
(PxPxPxPxpx,PyPyPyPypy,PzPzPzPzpz,PwPwPwPwpw) and returns an
array of homogeneous output points
(QxQxQxQxqx,QyQyQyQyqy,QzQzQzQzqz,QwQwQwQwqw). The
transformation is described by the homogeneous transformation matrix
given in HomMat3DHomMat3DHomMat3DHomMat3DhomMat3D. This corresponds to the following
equation (input and output points as homogeneous vectors):
To transform the homogeneous coordinates to Euclidean coordinates,
they must be divided by QwQwQwQwqw:
This can be achieved directly by calling
projective_trans_point_3dprojective_trans_point_3dProjectiveTransPoint3dProjectiveTransPoint3dProjectiveTransPoint3d. Thus,
projective_trans_hom_point_3dprojective_trans_hom_point_3dProjectiveTransHomPoint3dProjectiveTransHomPoint3dProjectiveTransHomPoint3d is primarily useful for
transforming points or point sets for which the resulting points
might lie in the plane at infinity, i.e., points that potentially
have QwQwQwQwqw = 0, for which the above division cannot be
performed.
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Homogeneous projective transformation matrix.
PxPxPxPxpx (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (x coordinate).
PyPyPyPypy (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (y coordinate).
PzPzPzPzpz (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (z coordinate).
PwPwPwPwpw (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (w coordinate).
Output point (x coordinate).
Output point (y coordinate).
Output point (z coordinate).
Output point (w coordinate).
vector_to_hom_mat3dvector_to_hom_mat3dVectorToHomMat3dVectorToHomMat3dVectorToHomMat3d
projective_trans_point_3dprojective_trans_point_3dProjectiveTransPoint3dProjectiveTransPoint3dProjectiveTransPoint3d
Foundation