Name
projective_trans_point_3dT_projective_trans_point_3dProjectiveTransPoint3dProjectiveTransPoint3d — Project a 3D point using a projective transformation matrix.
Herror T_projective_trans_point_3d(const Htuple HomMat3D, const Htuple Px, const Htuple Py, const Htuple Pz, Htuple* Qx, Htuple* Qy, Htuple* Qz)
void ProjectiveTransPoint3d(const HTuple& HomMat3D, const HTuple& Px, const HTuple& Py, const HTuple& Pz, HTuple* Qx, HTuple* Qy, HTuple* Qz)
HTuple HHomMat3D::ProjectiveTransPoint3d(const HTuple& Px, const HTuple& Py, const HTuple& Pz, HTuple* Qy, HTuple* Qz) const
double HHomMat3D::ProjectiveTransPoint3d(double Px, double Py, double Pz, double* Qy, double* Qz) const
static void HOperatorSet.ProjectiveTransPoint3d(HTuple homMat3D, HTuple px, HTuple py, HTuple pz, out HTuple qx, out HTuple qy, out HTuple qz)
HTuple HHomMat3D.ProjectiveTransPoint3d(HTuple px, HTuple py, HTuple pz, out HTuple qy, out HTuple qz)
double HHomMat3D.ProjectiveTransPoint3d(double px, double py, double pz, out double qy, out double qz)
projective_trans_point_3dprojective_trans_point_3dProjectiveTransPoint3dProjectiveTransPoint3dProjectiveTransPoint3d applies the homogeneous projective
transformation matrix HomMat3DHomMat3DHomMat3DHomMat3DhomMat3D to all input points
(PxPxPxPxpx,PyPyPyPypy,PzPzPzPzpz) and returns an array of output
points (QxQxQxQxqx,QyQyQyQyqy,QzQzQzQzqz). The transformation is
described by the homogeneous transformation matrix given in
HomMat3DHomMat3DHomMat3DHomMat3DhomMat3D. This corresponds to the following equations
(input and output points as homogeneous vectors):
projective_trans_point_3dprojective_trans_point_3dProjectiveTransPoint3dProjectiveTransPoint3dProjectiveTransPoint3d then transforms the homogeneous
coordinates to Euclidean coordinates by dividing them by Tw:
If a point in the plane at infinity (Tw = 0) is created by the
transformation, an error is returned. If this is undesired,
projective_trans_hom_point_3dprojective_trans_hom_point_3dProjectiveTransHomPoint3dProjectiveTransHomPoint3dProjectiveTransHomPoint3d can be used.
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Homogeneous projective transformation matrix.
PxPxPxPxpx (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (x coordinate).
PyPyPyPypy (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (y coordinate).
PzPzPzPzpz (input_control) number(-array) → HTupleHTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input point (z coordinate).
Output point (x coordinate).
Output point (y coordinate).
Output point (z coordinate).
vector_to_hom_mat3dvector_to_hom_mat3dVectorToHomMat3dVectorToHomMat3dVectorToHomMat3d
projective_trans_hom_point_3dprojective_trans_hom_point_3dProjectiveTransHomPoint3dProjectiveTransHomPoint3dProjectiveTransHomPoint3d
Foundation