match_fundamental_matrix_distortion_ransac T_match_fundamental_matrix_distortion_ransac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac match_fundamental_matrix_distortion_ransac (Operator)
Name
match_fundamental_matrix_distortion_ransac T_match_fundamental_matrix_distortion_ransac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac match_fundamental_matrix_distortion_ransac
— Compute the fundamental matrix and the radial distortion coefficient
for a pair of stereo images by automatically finding correspondences
between image points.
Signature
match_fundamental_matrix_distortion_ransac (Image1 , Image2 : : Rows1 , Cols1 , Rows2 , Cols2 , GrayMatchMethod , MaskSize , RowMove , ColMove , RowTolerance , ColTolerance , Rotation , MatchThreshold , EstimationMethod , DistanceThreshold , RandSeed : FMatrix , Kappa , Error , Points1 , Points2 )
Herror T_match_fundamental_matrix_distortion_ransac (const Hobject Image1 , const Hobject Image2 , const Htuple Rows1 , const Htuple Cols1 , const Htuple Rows2 , const Htuple Cols2 , const Htuple GrayMatchMethod , const Htuple MaskSize , const Htuple RowMove , const Htuple ColMove , const Htuple RowTolerance , const Htuple ColTolerance , const Htuple Rotation , const Htuple MatchThreshold , const Htuple EstimationMethod , const Htuple DistanceThreshold , const Htuple RandSeed , Htuple* FMatrix , Htuple* Kappa , Htuple* Error , Htuple* Points1 , Htuple* Points2 )
void MatchFundamentalMatrixDistortionRansac (const HObject& Image1 , const HObject& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HTuple& GrayMatchMethod , const HTuple& MaskSize , const HTuple& RowMove , const HTuple& ColMove , const HTuple& RowTolerance , const HTuple& ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HTuple& EstimationMethod , const HTuple& DistanceThreshold , const HTuple& RandSeed , HTuple* FMatrix , HTuple* Kappa , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HHomMat2D HImage ::MatchFundamentalMatrixDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchFundamentalMatrixDistortionRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Kappa , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(Windows only)
double HHomMat2D ::MatchFundamentalMatrixDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
double HHomMat2D ::MatchFundamentalMatrixDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
double HHomMat2D ::MatchFundamentalMatrixDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
double HHomMat2D ::MatchFundamentalMatrixDistortionRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , double* Error , HTuple* Points1 , HTuple* Points2 )
(Windows only)
static void HOperatorSet .MatchFundamentalMatrixDistortionRansac (HObject image1 , HObject image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HTuple grayMatchMethod , HTuple maskSize , HTuple rowMove , HTuple colMove , HTuple rowTolerance , HTuple colTolerance , HTuple rotation , HTuple matchThreshold , HTuple estimationMethod , HTuple distanceThreshold , HTuple randSeed , out HTuple FMatrix , out HTuple kappa , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchFundamentalMatrixDistortionRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out double kappa , out double error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchFundamentalMatrixDistortionRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double kappa , out double error , out HTuple points1 , out HTuple points2 )
double HHomMat2D .MatchFundamentalMatrixDistortionRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
double HHomMat2D .MatchFundamentalMatrixDistortionRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out double error , out HTuple points1 , out HTuple points2 )
def match_fundamental_matrix_distortion_ransac (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[float], float, float, Sequence[int], Sequence[int]]
Description
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1 rows_1
,Cols1 Cols1 Cols1 Cols1 cols1 cols_1
) and
(Rows2 Rows2 Rows2 Rows2 rows2 rows_2
,Cols2 Cols2 Cols2 Cols2 cols2 cols_2
) in the stereo images
Image1 Image1 Image1 Image1 image1 image_1
and Image2 Image2 Image2 Image2 image2 image_2
, which must be of identical
size, match_fundamental_matrix_distortion_ransac match_fundamental_matrix_distortion_ransac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac match_fundamental_matrix_distortion_ransac
automatically finds the correspondences between the characteristic
points and determines the geometry of the stereo setup. For unknown
cameras the geometry of the stereo setup is represented by the
fundamental matrix FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
and the radial distortion
coefficient Kappa Kappa Kappa Kappa kappa kappa
. All corresponding points
must fulfill the epipolar constraint:
Here,
denote image points that are obtained by undistorting the input
image points with the division model (see
Calibration ):
Here,
denote the
distorted image points, specified relative to the image center, and
w and h denote the width and height of the input images. Thus,
match_fundamental_matrix_distortion_ransac match_fundamental_matrix_distortion_ransac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac MatchFundamentalMatrixDistortionRansac match_fundamental_matrix_distortion_ransac
assumes that the
principal point of the camera, i.e., the center of the radial
distortions, lies at the center of the image.
The returned Kappa Kappa Kappa Kappa kappa kappa
can be used to construct camera
parameters that can be used to rectify images or points (see
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar change_radial_distortion_cam_par
,
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage change_radial_distortion_image
, and
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints change_radial_distortion_points
):
Note the column/row ordering in the point coordinates above: since
the fundamental matrix encodes the projective relation between two
stereo images embedded in 3D space, the x/y notation must be
compliant with the camera coordinate system. Therefore, (x,y)
coordinates correspond to (column,row) pairs.
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
or
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
. The matching itself is carried out in two
steps: first, gray value correlations of mask windows around the
input points in the first and the second image are determined and an
initial matching between them is generated using the similarity of
the windows in both images. Then, the RANSAC algorithm is applied
to find the fundamental matrix and radial distortion coefficient
that maximizes the number of correspondences under the epipolar
constraint.
The size of the mask windows used for the matching is
MaskSize MaskSize MaskSize MaskSize maskSize mask_size
x
MaskSize MaskSize MaskSize MaskSize maskSize mask_size
. Three metrics for the correlation can be
selected. If GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
has the value 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd" ,
the sum of the squared gray value differences is used,
'sad' "sad" "sad" "sad" "sad" "sad" means the sum of absolute differences, and
'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" is the normalized cross correlation. For details
please refer to binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity binocular_disparity
. The metric is
minimized ('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" "sad" ) or maximized
('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ) over all possible point pairs. A matching thus
found is only accepted if the value of the metric is below the value
of MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" "sad" ) or above
that value ('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ).
To increase the speed of the algorithm the search area for the match
candidates can be limited to a rectangle by specifying its size and
offset. Only points within a window of
points are considered. The offset of the
center of the search window in the second image with respect to the
position of the current point in the first image is given by
RowMove RowMove RowMove RowMove rowMove row_move
and ColMove ColMove ColMove ColMove colMove col_move
.
If the second camera is rotated around the optical axis with respect
to the first camera, the parameter Rotation Rotation Rotation Rotation rotation rotation
may contain an
estimate for the rotation angle or an angle interval in radians. A
good guess will increase the quality of the gray value matching. If
the actual rotation differs too much from the specified estimate,
the matching will typically fail. In this case, an angle interval
should be specified and Rotation Rotation Rotation Rotation rotation rotation
is a tuple with two
elements. The larger the given interval is the slower is the
operator is since the RANSAC algorithm is run over all
(automatically determined) angle increments within the interval.
After the initial matching has been completed, a randomized search
algorithm (RANSAC) is used to determine the fundamental matrix
FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
and the radial distortion coefficient
Kappa Kappa Kappa Kappa kappa kappa
. It tries to find the parameters that are consistent
with a maximum number of correspondences. For a point to be
accepted, the distance in pixels to its corresponding epipolar line
must not exceed the threshold DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
.
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
decides whether the relative
orientation between the cameras is of a special type and which
algorithm is to be applied for its computation. If
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
is either 'linear' "linear" "linear" "linear" "linear" "linear" or
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" , the relative orientation is arbitrary. If
the left and right cameras are identical and the relative
orientation between them is a pure translation,
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
can be set to 'trans_linear' "trans_linear" "trans_linear" "trans_linear" "trans_linear" "trans_linear" or
'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" . The typical application for this
special motion case is the scenario of a single fixed camera looking
onto a moving conveyor belt. In order to get a unique solution for
the correspondence problem, the minimum required number of
corresponding points is nine in the general case and four in the
special translational case.
The fundamental matrix is computed by a linear algorithm if
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
is set to 'linear' "linear" "linear" "linear" "linear" "linear" or
'trans_linear' "trans_linear" "trans_linear" "trans_linear" "trans_linear" "trans_linear" . This algorithm is very fast. For the pure
translation case (EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
=
'trans_linear' "trans_linear" "trans_linear" "trans_linear" "trans_linear" "trans_linear" ), the linear method returns accurate results
for small to moderate noise of the point coordinates and for most
distortions (except for very small distortions). For a general
relative orientation of the two cameras (EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
= 'linear' "linear" "linear" "linear" "linear" "linear" ), the linear method only returns accurate
results for very small noise of the point coordinates and for
sufficiently large distortions. For EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
=
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" , a
mathematically optimal but slower optimization is used, which
minimizes the geometric reprojection error of reconstructed
projective 3D points. For a general relative orientation of the two
cameras, in general EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
=
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" should be selected.
The value Error Error Error Error error error
indicates the overall quality of the
estimation procedure and is the mean symmetric Euclidian distance in
pixels between the points and their corresponding epipolar lines.
Point pairs consistent with the above constraints are considered to
be corresponding points. Points1 Points1 Points1 Points1 points1 points_1
contains the indices of
the matched input points from the first image and Points2 Points2 Points2 Points2 points2 points_2
contains the indices of the corresponding points in the second
image.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
is set to a positive
number, the operator returns the same result on every call with the
same parameters because the internally used random number generator
is initialized with RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
=
0 , the random number generator is initialized with the
current time. In this case the results may not be reproducible.
Execution Information
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Parameters
Image1 Image1 Image1 Image1 image1 image_1
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 1.
Image2 Image2 Image2 Image2 image2 image_2
(input_object) singlechannelimage →
object HImage HObject HImage Hobject (byte / uint2)
Input image 2.
Rows1 Rows1 Rows1 Rows1 rows1 rows_1
(input_control) point.y-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input points in image 1 (row coordinate).
Restriction: length(Rows1) >= 9 || length(Rows1) >= 4
Cols1 Cols1 Cols1 Cols1 cols1 cols_1
(input_control) point.x-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input points in image 1 (column coordinate).
Restriction: length(Cols1) == length(Rows1)
Rows2 Rows2 Rows2 Rows2 rows2 rows_2
(input_control) point.y-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input points in image 2 (row coordinate).
Restriction: length(Rows2) >= 9 || length(Rows2) >= 4
Cols2 Cols2 Cols2 Cols2 cols2 cols_2
(input_control) point.x-array →
HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Input points in image 2 (column coordinate).
Restriction: length(Cols2) == length(Rows2)
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Gray value match metric.
Default value:
'ncc'
"ncc"
"ncc"
"ncc"
"ncc"
"ncc"
List of values: 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd"
MaskSize MaskSize MaskSize MaskSize maskSize mask_size
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Size of gray value masks.
Default value: 10
Typical range of values: 3
≤
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
mask_size
≤
15
Restriction: MaskSize >= 1
RowMove RowMove RowMove RowMove rowMove row_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average row coordinate offset of corresponding points.
Default value: 0
ColMove ColMove ColMove ColMove colMove col_move
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average column coordinate offset of corresponding points.
Default value: 0
RowTolerance RowTolerance RowTolerance RowTolerance rowTolerance row_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half height of matching search window.
Default value: 200
Restriction: RowTolerance >= 1
ColTolerance ColTolerance ColTolerance ColTolerance colTolerance col_tolerance
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half width of matching search window.
Default value: 200
Restriction: ColTolerance >= 1
Rotation Rotation Rotation Rotation rotation rotation
(input_control) angle.rad(-array) →
HTuple MaybeSequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Estimate of the relative rotation of the second image
with respect to the first image.
Default value: 0.0
Suggested values: 0.0, 0.1, -0.1, 0.7854, 1.571, 3.142
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
(input_control) number →
HTuple Union[int, float] HTuple Htuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Threshold for gray value matching.
Default value: 0.7
Suggested values: 0.9, 0.7, 0.5, 10, 20, 50, 100
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method
(input_control) string →
HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Algorithm for the computation of the fundamental
matrix and for special camera orientations.
Default value:
'gold_standard'
"gold_standard"
"gold_standard"
"gold_standard"
"gold_standard"
"gold_standard"
List of values: 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'linear' "linear" "linear" "linear" "linear" "linear" , 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" , 'trans_linear' "trans_linear" "trans_linear" "trans_linear" "trans_linear" "trans_linear"
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold
(input_control) number →
HTuple Union[float, int] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Maximal deviation of a point from its epipolar line.
Default value: 1
Restriction: DistanceThreshold > 0
RandSeed RandSeed RandSeed RandSeed randSeed rand_seed
(input_control) integer →
HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Seed for the random number generator.
Default value: 0
FMatrix FMatrix FMatrix FMatrix FMatrix fmatrix
(output_control) hom_mat2d →
HHomMat2D , HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Computed fundamental matrix.
Kappa Kappa Kappa Kappa kappa kappa
(output_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Computed radial distortion coefficient.
Error Error Error Error error error
(output_control) real →
HTuple float HTuple Htuple (real) (double ) (double ) (double )
Root-Mean-Square epipolar distance error.
Points1 Points1 Points1 Points1 points1 points_1
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 1.
Points2 Points2 Points2 Points2 points2 points_2
(output_control) integer-array →
HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 2.
Example (HDevelop)
points_foerstner (Image1, 1, 2, 3, 200, 0.1, 'gauss', 'true', \
Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2, 1, 2, 3, 200, 0.1, 'gauss', 'true', \
Rows2, Cols2, _, _, _, _, _, _, _, _)
match_fundamental_matrix_distortion_ransac (Image1, Image2, \
Rows1, Cols1, Rows2, \
Cols2, 'ncc', 10, 0, 0, \
100, 200, 0, 0.5, \
'trans_gold_standard', \
1, 42, FMatrix, Kappa, \
Error, Points1, Points2)
get_image_size (Image1, Width, Height)
CamParDist := ['area_scan_division',0.0,Kappa,1.0,1.0,\
0.5*(Width-1),0.5*Height-1,Width,Height]
change_radial_distortion_cam_par ('fixed', CamParDist, 0, CamPar)
change_radial_distortion_image (Image1, Image1, Image1Rect, \
CamParDist, CamPar)
change_radial_distortion_image (Image2, Image2, Image2Rect, \
CamParDist, CamPar)
gen_binocular_proj_rectification (Map1, Map2, FMatrix, [], Width, \
Height, Width, Height, 1, \
'bilinear_map', _, H1, H2)
map_image (Image1Rect, Map1, Image1Mapped)
map_image (Image2Rect, Map2, Image2Mapped)
binocular_disparity_mg (Image1Mapped, Image2Mapped, Disparity, \
Score, 1, 30, 8, 0, 'false', \
'default_parameters', 'fast_accurate')
Possible Predecessors
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner
,
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
Possible Successors
vector_to_fundamental_matrix_distortion vector_to_fundamental_matrix_distortion VectorToFundamentalMatrixDistortion VectorToFundamentalMatrixDistortion VectorToFundamentalMatrixDistortion vector_to_fundamental_matrix_distortion
,
change_radial_distortion_cam_par change_radial_distortion_cam_par ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar ChangeRadialDistortionCamPar change_radial_distortion_cam_par
,
change_radial_distortion_image change_radial_distortion_image ChangeRadialDistortionImage ChangeRadialDistortionImage ChangeRadialDistortionImage change_radial_distortion_image
,
change_radial_distortion_points change_radial_distortion_points ChangeRadialDistortionPoints ChangeRadialDistortionPoints ChangeRadialDistortionPoints change_radial_distortion_points
,
gen_binocular_proj_rectification gen_binocular_proj_rectification GenBinocularProjRectification GenBinocularProjRectification GenBinocularProjRectification gen_binocular_proj_rectification
See also
match_fundamental_matrix_ransac match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac
,
match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac
,
match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac
,
proj_match_points_ransac proj_match_points_ransac ProjMatchPointsRansac ProjMatchPointsRansac ProjMatchPointsRansac proj_match_points_ransac
,
calibrate_cameras calibrate_cameras CalibrateCameras CalibrateCameras CalibrateCameras calibrate_cameras
References
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
Module
3D Metrology