Name
find_uncalib_descriptor_modelT_find_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModel — Find the best matches of a descriptor model in an image.
Herror T_find_uncalib_descriptor_model(const Hobject Image, const Htuple ModelID, const Htuple DetectorParamName, const Htuple DetectorParamValue, const Htuple DescriptorParamName, const Htuple DescriptorParamValue, const Htuple MinScore, const Htuple NumMatches, const Htuple ScoreType, Htuple* HomMat2D, Htuple* Score)
void FindUncalibDescriptorModel(const HObject& Image, const HTuple& ModelID, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, const HTuple& MinScore, const HTuple& NumMatches, const HTuple& ScoreType, HTuple* HomMat2D, HTuple* Score)
HHomMat2DArray HDescriptorModel::FindUncalibDescriptorModel(const HImage& Image, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, const HTuple& MinScore, Hlong NumMatches, const HTuple& ScoreType, HTuple* Score) const
HHomMat2D HDescriptorModel::FindUncalibDescriptorModel(const HImage& Image, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, double MinScore, Hlong NumMatches, const HString& ScoreType, double* Score) const
HHomMat2D HDescriptorModel::FindUncalibDescriptorModel(const HImage& Image, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, double MinScore, Hlong NumMatches, const char* ScoreType, double* Score) const
HHomMat2DArray HImage::FindUncalibDescriptorModel(const HDescriptorModel& ModelID, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, const HTuple& MinScore, Hlong NumMatches, const HTuple& ScoreType, HTuple* Score) const
HHomMat2D HImage::FindUncalibDescriptorModel(const HDescriptorModel& ModelID, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, double MinScore, Hlong NumMatches, const HString& ScoreType, double* Score) const
HHomMat2D HImage::FindUncalibDescriptorModel(const HDescriptorModel& ModelID, const HTuple& DetectorParamName, const HTuple& DetectorParamValue, const HTuple& DescriptorParamName, const HTuple& DescriptorParamValue, double MinScore, Hlong NumMatches, const char* ScoreType, double* Score) const
static void HOperatorSet.FindUncalibDescriptorModel(HObject image, HTuple modelID, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, HTuple minScore, HTuple numMatches, HTuple scoreType, out HTuple homMat2D, out HTuple score)
HHomMat2D[] HDescriptorModel.FindUncalibDescriptorModel(HImage image, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, HTuple minScore, int numMatches, HTuple scoreType, out HTuple score)
HHomMat2D HDescriptorModel.FindUncalibDescriptorModel(HImage image, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, double minScore, int numMatches, string scoreType, out double score)
HHomMat2D[] HImage.FindUncalibDescriptorModel(HDescriptorModel modelID, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, HTuple minScore, int numMatches, HTuple scoreType, out HTuple score)
HHomMat2D HImage.FindUncalibDescriptorModel(HDescriptorModel modelID, HTuple detectorParamName, HTuple detectorParamValue, HTuple descriptorParamName, HTuple descriptorParamValue, double minScore, int numMatches, string scoreType, out double score)
The operator find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelFindUncalibDescriptorModel finds the best matches
of a descriptor model ModelIDModelIDModelIDModelIDmodelID in ImageImageImageImageimage.
The descriptor model must have been created previously by calling
create_uncalib_descriptor_modelcreate_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelCreateUncalibDescriptorModel,
create_calib_descriptor_modelcreate_calib_descriptor_modelCreateCalibDescriptorModelCreateCalibDescriptorModelCreateCalibDescriptorModel
or read_descriptor_modelread_descriptor_modelReadDescriptorModelReadDescriptorModelReadDescriptorModel.
A match is only accepted if its score exceeds the value of
MinScoreMinScoreMinScoreMinScoreminScore. This criterion is based on the 'inlier_ratio'
score that is described in details below. The main result of the operator
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelFindUncalibDescriptorModel for each match is a 3x3 matrix
HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D, which describes a 2D projection of model points to
search image points and is represented by a tuple of 9 elements in
row-major order. If more matches of the searched object (template)
appear and pass the MinScoreMinScoreMinScoreMinScoreminScore criterion, the resulting multiple
homographies are concatenated. The number of objects actually found is
then equal to NumObjects = |HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D|/9.
The detection process is divided into three parts. First,
interest points are extracted from the search image (only inside the
domain of the search image).
This is done using the point detector and its parameters
selected once during the generation of the model. However,
DetectorParamNameDetectorParamNameDetectorParamNameDetectorParamNamedetectorParamName and DetectorParamValueDetectorParamValueDetectorParamValueDetectorParamValuedetectorParamValue can be used
to specify different detector parameter values during the
find_uncalib_descriptor_modelfind_uncalib_descriptor_modelFindUncalibDescriptorModelFindUncalibDescriptorModelFindUncalibDescriptorModel call. By changing these parameters,
it is possible to adjust to illumination changes between the model
generation and the online detection. However, it is recommended to use
the same values used to create the model (pass an empty tuple).
The second step of the detection process is to calculate
correspondences between the model points and the points that were
detected. The run time parameters of the descriptor can be adjusted
with DescriptorParamNameDescriptorParamNameDescriptorParamNameDescriptorParamNamedescriptorParamName and DescriptorParamValueDescriptorParamValueDescriptorParamValueDescriptorParamValuedescriptorParamValue:
- 'min_score_descr'"min_score_descr""min_score_descr""min_score_descr""min_score_descr":
-
is the minimal classifier score for an interest point to be regarded
as a potential match. The score function is between 0.0 and 1.0,
but typically only values between 0.0 and 0.1 make sense. Increasing
'min_score_descr'"min_score_descr""min_score_descr""min_score_descr""min_score_descr" can increase significantly the detection
speed. Note, however, that using 'min_score_descr'"min_score_descr""min_score_descr""min_score_descr""min_score_descr" might have
negative effect on the robustness of the detection process, especially
when only few points can be found.
Typical values are [0.0 .. 0.1],
default value is 0.0.
- 'guided_matching'"guided_matching""guided_matching""guided_matching""guided_matching":
enhances the accuracy
of the object recognition when switched on. Note that it increases the
computational costs up to 10% in some cases.
Possible values are ['on'"on""on""on""on", 'off'"off""off""off""off"],
default value is 'on'"on""on""on""on".
The last step is the estimation of a homography that describes
the point correspondences. The homography is a 2D projection, which
describes a transformation from model points to points in ImageImageImageImageimage.
Here, Natural 3D Markers (N3Ms) are utilized to identify robustly the point
correspondences (see references).
Additionally to the estimated homography in HomMat2DHomMat2DHomMat2DHomMat2DhomMat2D, the
operator returns one or more ScoreScoreScoreScorescore estimations per object
instance as specified by the user in a tuple ScoreTypeScoreTypeScoreTypeScoreTypescoreType.
Currently the following values for ScoreTypeScoreTypeScoreTypeScoreTypescoreType are supported:
- 'num_points'"num_points""num_points""num_points""num_points":
-
number of point
correspondences per instance. An object instance should be considered
good, if it has 10 or more point correspondences with the model. Fewer
points are insufficient, because any random 4 point correspondences
define a mathematically correct homography between two images.
- 'inlier_ratio'"inlier_ratio""inlier_ratio""inlier_ratio""inlier_ratio":
the ratio of the number
of point correspondences to the number of model points. Although
this value can have values of [0.0 .. 1.0],
it is rather unlikely that this ratio can reach 1.0. Yet,
objects having inlier ratio less than 0.1, should be
disregarded.
Note that the resulting scores for more than one object instance will be
concatenated in ScoreScoreScoreScorescore, such that
|ScoreScoreScoreScorescore| = NumObjects*|ScoreTypeScoreTypeScoreTypeScoreTypescoreType|.
The point correspondences for each object can be queried with
get_descriptor_model_pointsget_descriptor_model_pointsGetDescriptorModelPointsGetDescriptorModelPointsGetDescriptorModelPoints.
Note that the domain of the search image should contain the whole
object to be searched for because interest points are only extracted
inside the domain of the search image. This means that if the domain
does not contain the full object to be searched for, the resulting
ScoreScoreScoreScorescore will decrease. Note also that matches may be found even
if the reference point (origin) of the model lies outside of the
domain of the search image. Both is in contrast to shape-based
matching, where the domain of the search image defines the search
space for the reference point of the model.
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Input image where the model should be found.
The handle to the descriptor model.
The detector's parameter names.
Default value: []
List of values: 'alpha'"alpha""alpha""alpha""alpha", 'check_neighbor'"check_neighbor""check_neighbor""check_neighbor""check_neighbor", 'mask_size_grd'"mask_size_grd""mask_size_grd""mask_size_grd""mask_size_grd", 'mask_size_smooth'"mask_size_smooth""mask_size_smooth""mask_size_smooth""mask_size_smooth", 'min_check_neighbor_diff'"min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff""min_check_neighbor_diff", 'min_score'"min_score""min_score""min_score""min_score", 'radius'"radius""radius""radius""radius", 'sigma_grad'"sigma_grad""sigma_grad""sigma_grad""sigma_grad", 'sigma_smooth'"sigma_smooth""sigma_smooth""sigma_smooth""sigma_smooth", 'subpix'"subpix""subpix""subpix""subpix", 'threshold'"threshold""threshold""threshold""threshold"
Values of the detector's parameters.
Default value: []
Suggested values: 0.08, 1, 1.2, 3, 15, 30, 1000, 'on'"on""on""on""on", 'off'"off""off""off""off"
The descriptor's parameter names.
Default value: []
List of values: 'guided_matching'"guided_matching""guided_matching""guided_matching""guided_matching", 'min_score_descr'"min_score_descr""min_score_descr""min_score_descr""min_score_descr"
Values of the descriptor's parameters.
Default value: []
Suggested values: 0.0, 0.001, 0.005, 0.01, 'on'"on""on""on""on", 'off'"off""off""off""off"
Minimum score of the instances of the models to
be found.
Default value: 0.2
Suggested values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Typical range of values: 0
≤
MinScore
MinScore
MinScore
MinScore
minScore
≤
1
Maximal number of found instances.
Default value: 1
Suggested values: 1, 2, 3, 4
Restriction: NumMatches >= 1
Score type to be evaluated in ScoreScoreScoreScorescore.
Default value:
'num_points'
"num_points"
"num_points"
"num_points"
"num_points"
List of values: 'inlier_ratio'"inlier_ratio""inlier_ratio""inlier_ratio""inlier_ratio", 'num_points'"num_points""num_points""num_points""num_points"
Homography between model and found instance.
Score of the found instances according to the
ScoreType input.
create_uncalib_descriptor_model (ImageReduced,'harris',[],[], \
[],[],42,ModelID)
get_descriptor_model_params (ModelID,DetectorType, \
DetectorParamName,DetectorParamValue, \
DescriptorParamName,DescriptorParamValue)
write_descriptor_model (ModelID,'simple_example.dsm')
read_descriptor_model ('simple_example.dsm',ModelID)
find_uncalib_descriptor_model (SearchImage,ModelID,[],[],[],[],0.2,1, \
['num_points','inlier_ratio'],HomMat2D,Score)
create_uncalib_descriptor_modelcreate_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelCreateUncalibDescriptorModel,
create_calib_descriptor_modelcreate_calib_descriptor_modelCreateCalibDescriptorModelCreateCalibDescriptorModelCreateCalibDescriptorModel,
read_descriptor_modelread_descriptor_modelReadDescriptorModelReadDescriptorModelReadDescriptorModel
create_uncalib_descriptor_modelcreate_uncalib_descriptor_modelCreateUncalibDescriptorModelCreateUncalibDescriptorModelCreateUncalibDescriptorModel,
create_calib_descriptor_modelcreate_calib_descriptor_modelCreateCalibDescriptorModelCreateCalibDescriptorModelCreateCalibDescriptorModel,
find_calib_descriptor_modelfind_calib_descriptor_modelFindCalibDescriptorModelFindCalibDescriptorModelFindCalibDescriptorModel,
get_descriptor_model_pointsget_descriptor_model_pointsGetDescriptorModelPointsGetDescriptorModelPointsGetDescriptorModelPoints
S. Hinterstoisser, S. Benhimane, and N. Navab: “N3M: Natural 3D Markers for
Real-Time Object Detection and Pose Estimation.“
IEEE 11th International Conference on Computer Vision, 2007. pp. 1-7,
ICCV 2007.
Matching