Name
learn_ndim_normT_learn_ndim_normLearnNdimNormLearnNdimNorm — Construct classes for class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm.
void LearnNdimNorm(const HObject& Foreground, const HObject& Background, const HObject& Image, const HTuple& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Radius, HTuple* Center, HTuple* Quality)
HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const HString& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Center, double* Quality) const
HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const HString& Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const
HTuple HImage::LearnNdimNorm(const HRegion& Foreground, const HRegion& Background, const char* Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const
HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const HString& Metric, const HTuple& Distance, const HTuple& MinNumberPercent, HTuple* Center, double* Quality) const
HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const HString& Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const
HTuple HRegion::LearnNdimNorm(const HRegion& Background, const HImage& Image, const char* Metric, double Distance, double MinNumberPercent, HTuple* Center, double* Quality) const
static void HOperatorSet.LearnNdimNorm(HObject foreground, HObject background, HObject image, HTuple metric, HTuple distance, HTuple minNumberPercent, out HTuple radius, out HTuple center, out HTuple quality)
HTuple HImage.LearnNdimNorm(HRegion foreground, HRegion background, string metric, HTuple distance, HTuple minNumberPercent, out HTuple center, out double quality)
HTuple HImage.LearnNdimNorm(HRegion foreground, HRegion background, string metric, double distance, double minNumberPercent, out HTuple center, out double quality)
HTuple HRegion.LearnNdimNorm(HRegion background, HImage image, string metric, HTuple distance, HTuple minNumberPercent, out HTuple center, out double quality)
HTuple HRegion.LearnNdimNorm(HRegion background, HImage image, string metric, double distance, double minNumberPercent, out HTuple center, out double quality)
learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm generates classification clusters from the
region ForegroundForegroundForegroundForegroundforeground and the corresponding gray values in
the multi-channel image ImageImageImageImageimage, which can be used in
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm. BackgroundBackgroundBackgroundBackgroundbackground determines a class
of pixels not to be found in class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm. This
parameter may be empty (empty object).
The parameter DistanceDistanceDistanceDistancedistance determines the maximum distance
RadiusRadiusRadiusRadiusradius of the clusters. It describes the minimum distance
between two cluster centers. If the parameter DistanceDistanceDistanceDistancedistance
is small the (small) hyper-cubes or hyper-spheres can approximate
the feature space well. Simultaneously the runtime during
classification increases.
The ratio of the number of pixels in a cluster to the total number
of pixels (in percent) must be larger than the value of
MinNumberPercentMinNumberPercentMinNumberPercentMinNumberPercentminNumberPercent, otherwise the cluster is not returned.
MinNumberPercentMinNumberPercentMinNumberPercentMinNumberPercentminNumberPercent serves to eliminate outliers in the
training set. If it is chosen too large many clusters are
suppressed.
Two different clustering procedures can be selected: The minimum
Euclidean distance algorithm (n-dimensional hyper-spheres) and the maximum
algorithm (n-dimensional hyper-cubes) for describing the pixels of
the image to classify in the n-dimensional histogram (parameter
MetricMetricMetricMetricmetric). The Euclidian metric usually yields the better
results, but takes longer to compute. The parameter
QualityQualityQualityQualityquality returns the quality of the clustering. It is a
measure of overlap between the rejection class and the classificator
classes. Values larger than 0 denote the corresponding ratio of
overlap. If no rejection region is given, its value is set to 1.
The regions in BackgroundBackgroundBackgroundBackgroundbackground do not influence on the
clustering. They are merely used to check the results that can be
expected.
From a user's point of view the key difference between
learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm and learn_ndim_boxlearn_ndim_boxLearnNdimBoxLearnNdimBoxLearnNdimBox is that in the
latter case the rejection class affects the classification process
itself. Here, a hyper plane is generated that separates
ForegroundForegroundForegroundForegroundforeground and BackgroundBackgroundBackgroundBackgroundbackground classes, so that no
points in feature space are classified incorrectly.
As for learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm, however, an overlap between
ForegroundForegroundForegroundForegroundforeground and BackgroundBackgroundBackgroundBackgroundbackground class is allowed.
This has its effect on the return value QualityQualityQualityQualityquality.
The larger the overlap, the smaller this value.
- Multithreading type: exclusive (runs in parallel only with independent operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
Foreground pixels to be trained.
Background pixels to be trained (rejection class).
Multi-channel training image.
Metric to be used.
Default value:
'euclid'
"euclid"
"euclid"
"euclid"
"euclid"
List of values: 'euclid'"euclid""euclid""euclid""euclid", 'maximum'"maximum""maximum""maximum""maximum"
Maximum cluster radius.
Default value: 10.0
Suggested values: 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 13.0, 17.0, 24.0, 30.0, 40.0
Typical range of values: 0.0
≤
Distance
Distance
Distance
Distance
distance
≤
511.0 (lin)
Minimum increment: 0.01
Recommended increment: 1.0
Restriction: Distance > 0.0
The ratio of the number of pixels in a cluster to the
total number of pixels (in percent) must be larger than
MinNumberPercent (otherwise the cluster is not output).
Default value: 0.01
Suggested values: 0.001, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0
Typical range of values: 0.0
≤
MinNumberPercent
MinNumberPercent
MinNumberPercent
MinNumberPercent
minNumberPercent
≤
100.0 (lin)
Minimum increment: 0.01
Recommended increment: 0.1
Restriction: 0 <= MinNumberPercent && MinNumberPercent <= 100
Cluster radii or half edge lengths.
Coordinates of all cluster centers.
Overlap of the rejection class with the classified
objects (1: no overlap).
Assertion: 0 <= Quality && Quality <= 1
learn_ndim_normlearn_ndim_normLearnNdimNormLearnNdimNormLearnNdimNorm returns 2 (H_MSG_TRUE) if all parameters are
correct. The behavior with respect to the input images can be
determined by setting the values of the flags
'no_object_result'"no_object_result""no_object_result""no_object_result""no_object_result" and 'empty_region_result'"empty_region_result""empty_region_result""empty_region_result""empty_region_result"
with set_systemset_systemSetSystemSetSystemSetSystem. If necessary, an exception is raised.
min_max_graymin_max_grayMinMaxGrayMinMaxGrayMinMaxGray,
sobel_ampsobel_ampSobelAmpSobelAmpSobelAmp,
binomial_filterbinomial_filterBinomialFilterBinomialFilterBinomialFilter,
gauss_filtergauss_filterGaussFilterGaussFilterGaussFilter,
reduce_domainreduce_domainReduceDomainReduceDomainReduceDomain,
diff_of_gaussdiff_of_gaussDiffOfGaussDiffOfGaussDiffOfGauss
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm,
connectionconnectionConnectionConnectionConnection,
dilation1dilation1Dilation1Dilation1Dilation1,
erosion1erosion1Erosion1Erosion1Erosion1,
openingopeningOpeningOpeningOpening,
closingclosingClosingClosingClosing,
rank_regionrank_regionRankRegionRankRegionRankRegion,
shape_transshape_transShapeTransShapeTransShapeTrans,
skeletonskeletonSkeletonSkeletonSkeleton
learn_ndim_boxlearn_ndim_boxLearnNdimBoxLearnNdimBoxLearnNdimBox,
learn_class_boxlearn_class_boxLearnClassBoxLearnClassBoxLearnClassBox
class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNorm,
histo_2dimhisto_2dimHisto2dimHisto2dimHisto2dim
P. Haberäcker, “Digitale Bildverarbeitung”;
Hanser-Studienbücher, München, Wien, 1987
Foundation