ClassesClasses | | Operators

mult_matrixT_mult_matrixMultMatrixMultMatrix (Operator)

Name

mult_matrixT_mult_matrixMultMatrixMultMatrix — Multiply two matrices.

Signature

mult_matrix( : : MatrixAID, MatrixBID, MultType : MatrixMultID)

Herror T_mult_matrix(const Htuple MatrixAID, const Htuple MatrixBID, const Htuple MultType, Htuple* MatrixMultID)

void MultMatrix(const HTuple& MatrixAID, const HTuple& MatrixBID, const HTuple& MultType, HTuple* MatrixMultID)

HMatrix HMatrix::MultMatrix(const HMatrix& MatrixBID, const HString& MultType) const

HMatrix HMatrix::MultMatrix(const HMatrix& MatrixBID, const char* MultType) const

static void HOperatorSet.MultMatrix(HTuple matrixAID, HTuple matrixBID, HTuple multType, out HTuple matrixMultID)

HMatrix HMatrix.MultMatrix(HMatrix matrixBID, string multType)

Description

The operator mult_matrixmult_matrixMultMatrixMultMatrixMultMatrix computes the product of the input matrices MatrixAMatrixAMatrixAMatrixAmatrixA and MatrixBMatrixBMatrixBMatrixBmatrixB defined by the matrix handles MatrixAIDMatrixAIDMatrixAIDMatrixAIDmatrixAID and MatrixBIDMatrixBIDMatrixBIDMatrixBIDmatrixBID. A new matrix MatrixMultMatrixMultMatrixMultMatrixMultmatrixMult is generated with the result. The operator returns the matrix handle MatrixMultIDMatrixMultIDMatrixMultIDMatrixMultIDmatrixMultID of the matrix MatrixMultMatrixMultMatrixMultMatrixMultmatrixMult. Access to the elements of the matrix is possible e.g. with the operator get_full_matrixget_full_matrixGetFullMatrixGetFullMatrixGetFullMatrix. If desired, one or both input matrices will be transposed for the multiplication.

The type of multiplication can be selected via MultTypeMultTypeMultTypeMultTypemultType:

'AB'"AB""AB""AB""AB":

The matrices MatrixAMatrixAMatrixAMatrixAmatrixA and MatrixBMatrixBMatrixBMatrixBmatrixB will not be transposed. Therefore, the formula for the calculation of the result is:

    MatrixMultMatrixMultMatrixMultMatrixMultmatrixMult = MatrixAMatrixAMatrixAMatrixAmatrixA * MatrixBMatrixBMatrixBMatrixBmatrixB.
  

The number of columns of the matrix MatrixAMatrixAMatrixAMatrixAmatrixA must be identical to the number of rows of the matrix MatrixBMatrixBMatrixBMatrixBmatrixB.

Example:

'ATB'"ATB""ATB""ATB""ATB":

The matrix MatrixAMatrixAMatrixAMatrixAmatrixA will be transposed. The matrix MatrixBMatrixBMatrixBMatrixBmatrixB will not be transposed. Therefore, the formula for the calculation of the result is:

The number of rows of the matrix MatrixAMatrixAMatrixAMatrixAmatrixA must be identical to the number of rows of the matrix MatrixBMatrixBMatrixBMatrixBmatrixB.

Example:

'ABT'"ABT""ABT""ABT""ABT":

The matrix MatrixAMatrixAMatrixAMatrixAmatrixA will not be transposed. The matrix MatrixBMatrixBMatrixBMatrixBmatrixB will be transposed. Therefore, the formula for the calculation of the result is:

The number of columns of the matrix MatrixAMatrixAMatrixAMatrixAmatrixA must be identical to the number of columns of the matrix MatrixBMatrixBMatrixBMatrixBmatrixB.

Example:

'ATBT'"ATBT""ATBT""ATBT""ATBT":

The matrix MatrixAMatrixAMatrixAMatrixAmatrixA and the matrix MatrixBMatrixBMatrixBMatrixBmatrixB will be transposed. Therefore, the formula for the calculation of the result is:

The number of rows of the matrix MatrixAMatrixAMatrixAMatrixAmatrixA must be identical to the number of columns of the matrix MatrixBMatrixBMatrixBMatrixBmatrixB.

Example:

Execution Information

Parameters

MatrixAIDMatrixAIDMatrixAIDMatrixAIDmatrixAID (input_control)  matrix HMatrix, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Matrix handle of the input matrix A.

MatrixBIDMatrixBIDMatrixBIDMatrixBIDmatrixBID (input_control)  matrix HMatrix, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Matrix handle of the input matrix B.

MultTypeMultTypeMultTypeMultTypemultType (input_control)  string HTupleHTupleHtuple (string) (string) (HString) (char*)

Type of the input matrices.

Default value: 'AB' "AB" "AB" "AB" "AB"

List of values: 'AB'"AB""AB""AB""AB", 'ABT'"ABT""ABT""ABT""ABT", 'ATB'"ATB""ATB""ATB""ATB", 'ATBT'"ATBT""ATBT""ATBT""ATBT"

MatrixMultIDMatrixMultIDMatrixMultIDMatrixMultIDmatrixMultID (output_control)  matrix HMatrix, HTupleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Matrix handle of the multiplied matrices.

Result

If the parameters are valid, the operator mult_matrixmult_matrixMultMatrixMultMatrixMultMatrix returns the value 2 (H_MSG_TRUE). If necessary, an exception is raised.

Possible Predecessors

create_matrixcreate_matrixCreateMatrixCreateMatrixCreateMatrix

Possible Successors

get_full_matrixget_full_matrixGetFullMatrixGetFullMatrixGetFullMatrix, get_value_matrixget_value_matrixGetValueMatrixGetValueMatrixGetValueMatrix

Alternatives

mult_matrix_modmult_matrix_modMultMatrixModMultMatrixModMultMatrixMod

See also

mult_element_matrixmult_element_matrixMultElementMatrixMultElementMatrixMultElementMatrix, mult_element_matrix_modmult_element_matrix_modMultElementMatrixModMultElementMatrixModMultElementMatrixMod, div_element_matrixdiv_element_matrixDivElementMatrixDivElementMatrixDivElementMatrix, div_element_matrix_moddiv_element_matrix_modDivElementMatrixModDivElementMatrixModDivElementMatrixMod, transpose_matrixtranspose_matrixTransposeMatrixTransposeMatrixTransposeMatrix, transpose_matrix_modtranspose_matrix_modTransposeMatrixModTransposeMatrixModTransposeMatrixMod

References

David Poole: “Linear Algebra: A Modern Introduction”; Thomson; Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The Johns Hopkins University Press; Baltimore and London; 1996.

Module

Foundation


ClassesClasses | | Operators