Name
essential_to_fundamental_matrixT_essential_to_fundamental_matrixEssentialToFundamentalMatrixEssentialToFundamentalMatrix — Compute the fundamental matrix from an essential matrix.
The fundamental matrix is the entity describing the epipolar constraint
in image coordinates (C,R) and the essential matrix is its counterpart
for 3D direction vectors (X,Y,1):
Image coordinates result from 3D direction vectors by
multiplication with the camera matrix CamMat:
Therefore, the fundamental matrix FMatrixFMatrixFMatrixFMatrixFMatrix is calculated from the
essential matrix EMatrixEMatrixEMatrixEMatrixEMatrix and the camera matrices CamMat1CamMat1CamMat1CamMat1camMat1,
CamMat2CamMat2CamMat2CamMat2camMat2 by the following formula:
The transformation of the essential matrix to the fundamental matrix
goes along with the propagation of the covariance matrices CovEMatCovEMatCovEMatCovEMatcovEMat
to CovFMatCovFMatCovFMatCovFMatcovFMat. If CovEMatCovEMatCovEMatCovEMatcovEMat is empty CovFMatCovFMatCovFMatCovFMatcovFMat will be
empty too.
The conversion operator essential_to_fundamental_matrixessential_to_fundamental_matrixEssentialToFundamentalMatrixEssentialToFundamentalMatrixEssentialToFundamentalMatrix is used
especially for a subsequent visualization of the epipolar line structure
via the fundamental matrix, which depicts the underlying stereo geometry.
- Multithreading type: reentrant (runs in parallel with non-exclusive operators).
- Multithreading scope: global (may be called from any thread).
- Processed without parallelization.
9x9 covariance matrix of the
essential matrix.
Default value: []
Camera matrix of the 1. camera.
Camera matrix of the 2. camera.
Computed fundamental matrix.
9x9 covariance matrix of the
fundamental matrix.
vector_to_essential_matrixvector_to_essential_matrixVectorToEssentialMatrixVectorToEssentialMatrixVectorToEssentialMatrix
rel_pose_to_fundamental_matrixrel_pose_to_fundamental_matrixRelPoseToFundamentalMatrixRelPoseToFundamentalMatrixRelPoseToFundamentalMatrix
3D Metrology