Name
hom_mat3d_rotate T_hom_mat3d_rotate HomMat3dRotate HomMat3dRotate — Add a rotation to a homogeneous 3D transformation matrix.
void HomMat3dRotate (const HTuple& HomMat3D , const HTuple& Phi , const HTuple& Axis , const HTuple& Px , const HTuple& Py , const HTuple& Pz , HTuple* HomMat3DRotate )
HHomMat3D HHomMat3D ::HomMat3dRotate (const HTuple& Phi , const HTuple& Axis , const HTuple& Px , const HTuple& Py , const HTuple& Pz ) const
HHomMat3D HHomMat3D ::HomMat3dRotate (double Phi , const HString& Axis , double Px , double Py , double Pz ) const
HHomMat3D HHomMat3D ::HomMat3dRotate (double Phi , const char* Axis , double Px , double Py , double Pz ) const
static void HOperatorSet .HomMat3dRotate (HTuple homMat3D , HTuple phi , HTuple axis , HTuple px , HTuple py , HTuple pz , out HTuple homMat3DRotate )
HHomMat3D HHomMat3D .HomMat3dRotate (HTuple phi , HTuple axis , HTuple px , HTuple py , HTuple pz )
HHomMat3D HHomMat3D .HomMat3dRotate (double phi , string axis , double px , double py , double pz )
hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate adds a rotation by the angle Phi Phi Phi Phi phi around the
axis passed in the parameter Axis Axis Axis Axis axis to the homogeneous 3D
transformation matrix HomMat3D HomMat3D HomMat3D HomMat3D homMat3D and returns the resulting matrix in
HomMat3DRotate HomMat3DRotate HomMat3DRotate HomMat3DRotate homMat3DRotate . The axis can be specified by passing the strings
'x', 'y', or 'z', or by passing a vector [x,y,z] as a tuple.
The rotation is described by a 3×3 rotation matrix
R. It is performed relative to the global
(i.e., fixed) coordinate system; this corresponds to the following chain of
transformation matrices:
Axis Axis Axis Axis axis = 'x' "x" "x" "x" "x" :
Axis Axis Axis Axis axis = 'y' "y" "y" "y" "y" :
Axis Axis Axis Axis axis = 'z' "z" "z" "z" "z" :
Axis Axis Axis Axis axis = [x,y,z] :
The point (Px Px Px Px px ,Py Py Py Py py ,Pz Pz Pz Pz pz ) is the fixed point of the
transformation, i.e., this point remains unchanged when transformed using
HomMat3DRotate HomMat3DRotate HomMat3DRotate HomMat3DRotate homMat3DRotate . To obtain this behavior, first a translation is
added to the input transformation matrix that moves the fixed point onto the
origin of the global coordinate system. Then, the rotation is added, and
finally a translation that moves the fixed point back to its original
position. This corresponds to the following chain of transformations:
To perform the transformation in the local coordinate system, i.e.,
the one described by HomMat3D HomMat3D HomMat3D HomMat3D homMat3D , use
hom_mat3d_rotate_local hom_mat3d_rotate_local HomMat3dRotateLocal HomMat3dRotateLocal HomMat3dRotateLocal .
Note that homogeneous matrices are stored row-by-row as a tuple;
the last row is usually not stored because it is identical for all
homogeneous matrices that describe an affine transformation. For example,
the homogeneous matrix
is stored as the tuple [ra, rb, rc, td, re, rf, rg, th, ri, rj, rk, tl].
However, it is also possible to process full 4×4 matrices,
which represent a projective 4D transformation.
Multithreading type: reentrant (runs in parallel with non-exclusive operators).
Multithreading scope: global (may be called from any thread).
Processed without parallelization.
Input transformation matrix.
Phi Phi Phi Phi phi (input_control) angle.rad → HTuple HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Rotation angle.
Default value: 0.78
Suggested values: 0.1, 0.2, 0.3, 0.4, 0.78, 1.57, 3.14
Typical range of values: 0
≤
Phi
Phi
Phi
Phi
phi
≤
6.28318530718
Axis Axis Axis Axis axis (input_control) string(-array) → HTuple HTuple Htuple (string / real / integer) (string / double / int / long) (HString / double / Hlong) (char* / double / Hlong)
Axis, to be rotated around.
Default value:
'x'
"x"
"x"
"x"
"x"
Suggested values: 'x' "x" "x" "x" "x" , 'y' "y" "y" "y" "y" , 'z' "z" "z" "z" "z"
Px Px Px Px px (input_control) point3d.x → HTuple HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Fixed point of the transformation (x coordinate).
Default value: 0
Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024
Py Py Py Py py (input_control) point3d.y → HTuple HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Fixed point of the transformation (y coordinate).
Default value: 0
Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024
Pz Pz Pz Pz pz (input_control) point3d.z → HTuple HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Fixed point of the transformation (z coordinate).
Default value: 0
Suggested values: 0, 16, 32, 64, 128, 256, 512, 1024
Output transformation matrix.
If the parameters are valid, the operator hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate returns
2 (H_MSG_TRUE). If necessary, an exception is raised.
hom_mat3d_identity hom_mat3d_identity HomMat3dIdentity HomMat3dIdentity HomMat3dIdentity ,
hom_mat3d_translate hom_mat3d_translate HomMat3dTranslate HomMat3dTranslate HomMat3dTranslate ,
hom_mat3d_scale hom_mat3d_scale HomMat3dScale HomMat3dScale HomMat3dScale ,
hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate
hom_mat3d_translate hom_mat3d_translate HomMat3dTranslate HomMat3dTranslate HomMat3dTranslate ,
hom_mat3d_scale hom_mat3d_scale HomMat3dScale HomMat3dScale HomMat3dScale ,
hom_mat3d_rotate hom_mat3d_rotate HomMat3dRotate HomMat3dRotate HomMat3dRotate
hom_mat3d_invert hom_mat3d_invert HomMat3dInvert HomMat3dInvert HomMat3dInvert ,
hom_mat3d_identity hom_mat3d_identity HomMat3dIdentity HomMat3dIdentity HomMat3dIdentity ,
hom_mat3d_rotate_local hom_mat3d_rotate_local HomMat3dRotateLocal HomMat3dRotateLocal HomMat3dRotateLocal ,
pose_to_hom_mat3d pose_to_hom_mat3d PoseToHomMat3d PoseToHomMat3d PoseToHomMat3d ,
hom_mat3d_to_pose hom_mat3d_to_pose HomMat3dToPose HomMat3dToPose HomMat3dToPose ,
hom_mat3d_compose hom_mat3d_compose HomMat3dCompose HomMat3dCompose HomMat3dCompose
Foundation